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Matrix Completion Problem (MCP)

MCP is in general NP-hard

Low-rank factorization formulation is both memory and

computationally efficient

Gradient descent (GD) is a simple and scalable method

Convergence analysis in non-symmetric MCP is challenging

Global versus Local Convergence Analysis

Global analysis

requires assumptions on underlying model in asymptotic settings

is powerful in proving convergence to a unique global optimum

provides conservative upper bounds on the linear convergence rate

Local analysis

identifies the deterministic conditions in a broad range of settings

complementary to global analysis

provides an exact estimate of the linear rate

Contributions

X Analyze the local convergence of GD for non-symmetric MCP

X Establish the first-known exact linear convergence rate

X Illustrate the correctness and tightness via numerical simulation

Gradient Descent for Non-Symmetric MCP

Proposed objective function with regularization:

min
A∈Rm×r,B∈Rn×r

f (A,B) =
1

2
‖PΩ(AB>−M )‖2F +

1

4
‖A>A− cIr‖2F

Orthogonality regularization forA to ensure uniqueness

Scaling factor c to improve the convergence speed

Algorithm 1 Factorization-based Gradient Descent

Input: A0, B0, PΩ(M ), η
Output: {Ak,Bk}
1: for k = 0, 1, 2, . . . do
2: Pk = PΩ(AkB

>
k −M )

3: Ak+1 = Ak − η
(
PkBk +Ak(A

>
kAk − cIr)

)
. A-update

4: Bk+1 = Bk − ηP>
k Ak . B-update

Local Convergence Analysis

Establishing a recursion on the error

Consider the SVD M = UΣV > = A∗B
>
∗ . Define the error matrix

Ek =

[
Ak

Bk

] [
A>

k B>
k

]
−
[
A∗
B∗

] [
A>

∗ B>
∗
]
=

[
EAA

k EAB
k

EBA
k EBB

k

]

Using the A and B updates to represent

vec(Ek+1) = Z(I(m+n)2 − ηH)Z>vec(Ek) +O(‖Ek‖2F ) (1)

H depends only on the solution matrix M and the sampling set Ω
Z is a permutation matrix

Integrating structural constraints

Ek is the difference between 2 rank-r PSD matrices in R(m+n)×(m+n)

vec(Ek) = PsymPTr
vec(Ek) +O(‖Ek‖2F ) (2)

Psym is the projection onto the set of symmetric matrices

PTr
is the projection onto the tangent space of the set of rank-r matrices

Decompose PsymPTr
= QQ>. Substituting (2) back into (1) yields

Q>vec(Ek+1) = Q>Z(I(m+n)2 − ηH)Z>QQ>vec(Ek) +O(‖Ek‖2F )

Convergence of fixed-point iterations

IfQ>Z(I(m+n)2 − ηH)Z>Q is a contraction map, then starting with E0

sufficiently small (in norm), we have

‖Ek‖F ≤ C‖E0‖F · ρk,
where ρ is the spectral radius ofQ>Z(I(m+n)2 − ηH)Z>Q and C > 0 is
some numerical constant

Main Theorem

If Ĥ = Q>ZHZ>Q is non-singular and A0B
>
0 is sufficiently close

to M , then Algorithm 1 produces a sequence of matrices AkB
>
k

converging to M at an asymptotic linear rate

ρ = max{|1− ηλmax(Ĥ)|, |1− ηλmin(Ĥ)|}

Numerical Results

Summary

(Left) The empirical rate at which ‖Ek‖F and ‖EAB
k ‖F decrease to

zero matches that of our exact analytical rate ρk

(Right) c = 1 results in slow convergence since ‖A‖F and ‖B‖F
are significantly different

(Right) c∗ =
√

mn
r‖Ω‖‖PΩ(M )‖F yields the fastest empirical

convergence with ‖A‖F ≈ ‖B‖F

More about exact linear convergence rate analysis ⇒
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