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Matrix Completion Problem (MCP)
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Users

= MCP is in general NP-hard

= Low-rank factorization formulation is both memory and
computationally efficient

= Gradient descent (GD) is a simple and scalable method
= Convergence analysis in non-symmetric MCP is challenging

Global versus Local Convergence Analysis

Global analysis

= requires assumptions on underlying model in asymptotic settings
= Is powerful in proving convergence to a unigue global optimum
= provides conservative upper bounds on the linear convergence rate

Local analysis

= Identifies the deterministic conditions in a broad range of settings
= complementary to global analysis
= provides an exact estimate of the linear rate

Contributions

/Analyze the local convergence of GD for non-symmetric MCP
/ Establish the first-known exact linear convergence rate
v lllustrate the correctness and tightness via numerical simulation
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Gradient Descent for Non-Symmetric MCP

Proposed objective function with regularization:
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= Orthogonality regularization for A to ensure unigueness
= Scaling factor ¢ to improve the convergence speed

Algorithm 1 Factorization-based Gradient Descent

Input: Ay, By, Po(M), n
Output: {A;, B}
1. fork=0,1,2,...do
2: Pk = PQ(A/{B/Z o M)
3: A=A, — n(PkBk + Ak(A];rAk — CI?“))
4: By = By, — 77PkTAk

> A-update
> B-update

Local Convergence Analysis

Establishing a recursion on the error

« Considerthe SV\D M =UXV' = A,B,. Define the error matrix
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= Using the A and B updates to represent
_ T 2
vec(Eji1) = Z(L(pinp — nH)Z ' vec(Ey) + O(|| Ex|7) (1)

= H depends only on the solution matrix M and the sampling set €2
= Z 1S a permutation matrix

Integrating structural constraints

« E, is the difference between 2 rank-r PSD matrices in R(m+n)x(m+n)
vec(Ey) = PoymPr vec(Ey) + O(HE;CH%) (2)

= P,y is the projection onto the set of symmetric matrices
= Pr is the projection onto the tangent space of the set of rank-r matrices

* Decompose Py Pr = QQ'. Substituting (2) back into (1) yields

Q vec(Ep1) = Q Z(Ijnnp —nH)Z QQ  vec(Ey) + O([| Exl)
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Convergence of fixed-point iterations

fQ'Z (I, n—nH)Z'Q is a contraction map, then starting with E;
sufficiently small (in norm), we have

| Exl|r < CllEo|lr- ",

where p Is the spectral radius of QTZ(I<m+n)2 ~nH)Z'Q and C > 0is
some numerical constant

-

fH = Q'ZHZ'Q is non-singular and AyB, is sufficiently close
to M, then Algorithm 1 produces a sequence of matrices A;B,
converging to M at an asymptotic linear rate

p = max{|1 — nAmax(H)|, |1 — nAmin(H)|}

Numerical Results
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* (Left) The empirical rate at which || Ey||r and || E{*?|| » decrease to
zero matches that of our exact analytical rate p*

* (Right) ¢ = 1 results in slow convergence since ||A||r and || B|| g
are significantly different

* (Right) ¢ =, /2| Po(M)|| » yields the fastest empirical

r[|]
convergence with ||A||lr = || B||r
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