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ABSTRACT

Independent vector analysis (IVA) is an effective approach to
joint blind source separation that fully leverages the statistical
dependence across multiple datasets. Nonetheless, its perfor-
mance might suffer when the number of datasets increases.
Constrained IVA is an effective way to bypass computational
issues and improve the separation quality by incorporating
prior information. This paper introduces a class of approaches
to constrained IVA. First, besides the existing augmented La-
grange method, we introduce two novel approaches: the alter-
nating direction method of multipliers and multi-objective op-
timization. Second, by exploiting the non-orthogonal decou-
pling of the IVA cost, we derive gradient descent and New-
ton’s method to minimize the objective function. Finally, we
demonstrate the effectiveness of algorithms for constrained
IVA over unconstrained IVA with simulations.

Index Terms— joint blind source separation, indepen-
dent vector analysis, constrained optimization

1. INTRODUCTION

Joint blind source separation (JBSS) [1] is the separation of
source signals from multiple sets of mixed signals, with fruit-
ful applications in fields such as audio/speech processing [2–
4] and medical imaging [5–7]. By leveraging the statisti-
cal dependencies across the datasets, JBSS outperforms tra-
ditional blind source separation that is applied to individual
datasets. Among approaches to JBSS, group ICA [5] is one
of the most popular methods in which multiple sets of data
are concatenated and reduced (typically through two levels of
dimension reduction using principal component analysis) to
a group representation in their common subspace. Once the
group data is created, independent component analysis (ICA)
[8] is applied to extract group independent components (ICs),
which can be then used to compute the ICs for each dataset
by back-reconstruction or dual regression. The disadvantage
of group ICA, however, is that it relies on the assumption of
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a common subspace among all datasets, and hence, its ability
to capture the variability might be limited. Another powerful
approach to JBSS is independent vector analysis (IVA) [9],
which generalizes ICA for BSS by modeling sources within
each dataset to be independent of others and each source to be
dependent on a single source within each of the other datasets.
Compared with group ICA and other approaches that apply
ICA separately to each dataset, IVA has been shown to be a
superior solution for capturing variability that exists among
the datasets. Notwithstanding, one major drawback of IVA
is that its performance degrades when the sample size is not
large enough or when the variability among the datasets is
very low [10].

To improve the performance of IVA, constrained IVA
has been developed as an effective way to incorporate prior
knowledge (often about the sources or the mixing matri-
ces [11]) while also addressing the aforementioned limita-
tions. A reliable set of constraints guides IVA optimization
algorithms to avoid sub-optimal solutions, increase the qual-
ity of source separation, and improve the model match with
the observation. In [12], Bhinge et al. introduced fixed-
threshold inequality constraints to the IVA cost function and
utilized a gradient-based Lagrangian framework to solve the
constrained optimization problem. Later on, the authors ex-
tended this work to an adaptive scheme to select the threshold
values and demonstrated the effectiveness of constrained IVA
for extracting time-varying spatiotemporal networks in fMRI
data analysis [13]. Beyond the gradient-based Lagrangian
approach, there has been little research on optimization al-
gorithms for constrained IVA as well as analyzing their per-
formance. Thus, there exists a need for a comprehensive
comparison of different optimization methods for constrained
IVA to better understand their properties.

In this paper, we introduce two novel approaches to con-
strained IVA: the alternating direction method of multipliers
(ADMM) and multi-objective optimization (MOO). The two
approaches are promising alternatives to the augmented La-
grange (AL) method in constrained optimization: ADMM
takes advantage of a dual decomposition as well as the aug-
mented Lagrangian methods, while MOO offers a threshold-
free formulation for constrained IVA. In addition, by exploit-



ing the non-orthogonal decoupling of the IVA cost, we derive
both gradient descent and Newton’s method to minimize the
objective function in each formulation of constrained IVA. We
highlight that the inverse of the Hessian matrix in Newton’s
method can be computed in a closed-form expression, mak-
ing this an attractive solution with the same computational
complexity per iteration as gradient descent but a faster con-
vergence speed. Finally, we demonstrate the effectiveness of
the proposed algorithms with simulations. Our numerical re-
sults provide insights into the pros and cons of each algorithm
and form the basis for developing their performance analysis.

2. BACKGROUND

2.1. Independent Vector Analysis (IVA)

Consider K datasets, each formed by T independently and
identically distributed (iid) samples of linear mixtures of N
independent sources

x[k](t) = A[k]s[k](t),

for k = 1, . . . ,K and t = 1, . . . , T . Here, A[k] ∈ RN×N is
an invertible mixing matrix for the kth dataset and s[k](t) =

[s
[k]
1 (t), . . . , s

[k]
N (t)]⊤ is the corresponding source vector. By

stacking the nth source component across K datasets, we
define the nth source component vector (SCV) as sn =

[s
[1]
n , . . . , s

[K]
n ]⊤. Using this notation, each SCV is a random

vector such that sm and sn are independent for any m ̸= n.
The goal of IVA is to identify the independent SCVs via
the estimation of K demixing matrices of the form W [k] =

[w
[k]
1 , . . . ,w

[k]
N ]⊤ ∈ RN×N . Denote y[k](t) = W [k]x[k](t),

the nth estimated SCV corresponding to the sample index t is
given by yn(t) = [y

[1]
n (t), . . . , y

[K]
n (t)]⊤∈ RK .

A common distribution used to model the SCVs is the
multivariate Gaussian distribution (MGD) with zero mean
and covariance matrix Σn ∈ RK×K . Using the maximum
likelihood principle [14], the cost function JIVA is given by
(1), where W = {W [k]}Kk=1 and Σ = {Σn}Nn=1 are the op-
timization variables, and X [k] = [x[k](1), . . . ,x[k](T )]. The
IVA algorithms for minimizing (1) often involve alternating
between updates of Σ and W . For each Σn, solving the first-
order optimality condition yields a closed-form update Σ̂n =

argminΣn
JIVA =

∑K
k,l=1(w

[k]
n )⊤

(
1
T X

[k](X [l])⊤
)
w

[l]
n eke

⊤
l .

For each w
[k]
n , since there is no closed-form expression for

the optimal solution, we resort to iterative methods such as
gradient descent or Newton’s method. In particular, let W̃ [k]

n

be the (N − 1) × N matrix obtained by removing the nth
row from W [k] and d

[k]
n ∈ RN be the unit length vector

satisfying W̃
[k]
n d

[k]
n = 0N−1. The gradient ∂JIVA/∂w
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l=1(e
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or the Hessian ∂2JIVA/∂w
[k]
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n ek)IN +
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(
(d
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n

)2
can be used to compute the de-

scent direction that minimizes the IVA cost function.

2.2. Constrained IVA with References

In constrained IVA, we consider a set of reference signals
{rn}Mn=1 ⊂ RT (M ≤ N) that can be used as prior con-
straints to guide the separation of independent sources. For
the kth dataset, denote y

[k]
n = [y

[k]
n (1), . . . , y

[k]
n (T )]⊤. The

idea here is to ensure that rn correlates higher with its corre-
sponding SCV than any other SCVs in the same dataset, i.e.,

ϵ(rn,y
[k]
n ) > ϵ(rn,y

[k]
m ) ∀m ̸= n, (2)

where n = 1, . . . ,M , m = 1, . . . , N , and ϵ : RT × RT →
[0, 1] is a similarity measure. A common approach to imple-
menting such constraints is via a pre-defined threshold pa-
rameter [11,12,15]. By selecting an appropriate value ρ such
that ϵ(rn,y

[k]
n ) ≥ ρ > ϵ(rn,y

[k]
m ),∀m ̸= n, only one inde-

pendent component is extracted as the closest to the reference
signal. Thus, the thresholding-constrained formulation is pro-
posed in [12] as

min
W ,Σ

JIVA(W ,Σ) s.t. ϵ(rn,y[k]
n ) ≥ ρ[k]n ∀n, k. (3)

In the rest of this paper, we use the absolute value of Pear-
son correlation as the similarity measure, i.e., for any vectors
a, b ∈ RT , ϵ(a, b) =

∣∣a⊤b
∣∣/∥a∥ ∥b∥. Assume the input data

is whitened, i.e., 1
T X

[k](X [k])⊤ = IK , the reference signal
is normalized to zero mean and unit variance, and the demix-
ing vector w

[k]
n is normalized to have unit norm after each

iteration, we have ϵ(rn,y
[k]
n ) = |r⊤n(X [k])⊤w

[k]
n |/T .

3. CONSTRAINED OPTIMIZATION METHODS FOR
CIVA WITH REFERENCES

3.1. Augmented Lagrangian

The augmented Lagrangian method is the first and most com-
mon approach to constrained IVA [11, 16]. Improving upon
penalty methods, the AL cost adds another term mimicking a
Lagrange multiplier of (3)

Lγ,ρ(W ,Σ,µ) = JIVA(W ,Σ) + Jref(W , γ,ρ), (4)

where Jref(W , γ,ρ) = 1
2γ

∑M
n=1

∑K
k=1((max(0, µ

[k]
n +

γ(ρ
[k]
n − 1

T |r
⊤
n(X
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n |)))2 − (µ

[k]
n )2). Here µ
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JIVA(W ,Σ) =
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2
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1

2
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2
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n −
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log|det (W [k])|, (1)



n = 1, . . . ,M and k = 1, . . . ,K, are the Lagrange multi-
pliers and γ > 0 is the scalar penalty parameter. At the ith
iteration, we update the parameters to minimize Lγ,ρ based
on their current values as follows

(W i+1,Σi+1) = argminW ,ΣLγ,ρ

(
W ,Σ,µi

)
, (5)

(α[k]
n )i+1 = (µ[k]

n )i + γ
(
(ρ[k]n )i − 1

T
|r⊤n(X [k])⊤(w[k]

n )i|
)
,

(µ[k]
n )i+1 = max

(
0, (α[k]

n )i+1
)
.

It can be shown [17] that for a bounded γ, the AL method
recovers with the solution of (3) while avoiding the ill-
conditioning problem of penalty methods.

Similar to minimizing the cost JIVA in (1), iterative meth-
ods such as gradient descent or Newton’s method can be used
to solve (5). The gradient descent update of w[k]

n , referred as
cIVA-G-AL-GD, is given by

(w[k]
n )i+1 = (w[k]

n )i − η
(∂JIVA

∂w
[k]
n

+
∂Jref

∂w
[k]
n

)∣∣∣
(w

[k]
n )i

, (6)

where ∂Jref/∂w
[k]
n = −In≤M sign(r⊤ny

[k]
n )( 1

T X
[k]rn)·

max(0, µ
[k]
n + γ(ρ

[k]
n − 1

T |r
⊤
n(X

[k])⊤w
[k]
n |)). Here, I(·) is

the indicator function and sign(·) is the sign function. Al-
ternatively, the Newton update for w[k]

n , referred as cIVA-G-
AL-Newton, is given by

(w[k]
n )i+1 = (w[k]

n )i − η(Hkk
n )−1 ∂Lγ,ρ

∂w
[k]
n

, (7)

where Hkk
n = (e⊤kΣ

−1
n ek)IN + unku

⊤
nk + vnkv

⊤
nk. Here

unk = d
[k]
n /(d

[k]
n )⊤w

[k]
n and vnk = In≤M I

(α
[k]
n )i+1>0

·(
1
T X

[k]rn
)
. Using the matrix inversion lemma with a rank-2

correction, we obtain (Hkk
n )−1 in (A).

3.2. Alternating Direction Method of Multipliers

Alternating direction method of multipliers can be viewed
as an attempt to blend the decomposability of dual decom-
position with the superior convergence properties of the AL
method for constrained optimization [18]. Applying ADMM
to (3), we first introduce a slack variable Z ∈ RN×K with
the (n, k)-entry z

[k]
n = 1

T r
⊤
n(X

[k])⊤w
[k]
n . Then, the con-

straint ϵ(rn,y
[k]
n ) ≥ ρ

[k]
n hold for all n = 1, . . . ,M and

k = 1, . . . ,K if and only if Z ∈ C = {Z ∈ RN×K | |Znk| ≥
ρ
[k]
n ∀n, k}. Thus, we consider a reformulation of (3)

min
W ,Σ

JIVA(W ,Σ) + IC(Z) s.t. A(W )−Z = 0, (8)

where A : RN×N×K → RN×K is a linear operator such
that [A(W )]nk = (a

[k]
n )⊤w

[k]
n and a

[k]
n = 1

T r
⊤
n(X

[k])⊤.
Similar to AL, the objective function in ADMM is given by
Lγ(W ,Σ,Z,µ) = JIVA(W ,Σ) + IC(Z) + µ⊤(A(W ) −
Z) + γ

2 ∥A(W )−Z∥2F , where µ ∈ RN×K is the Lagrange
multiplier and γ > 0 is the penalty parameter. The ADMM
updates are given by

(W i+1,Σi+1) = argmin
W ,Σ

JIVA
(
W ,Σ

)
+

γi

2

∥∥A(W )−Zi + µi
∥∥2
F
,

Zi+1 = argmin
Z

IC(Z) +
γi

2

∥∥A(W i+1)−Z + µi
∥∥2
F
,

µi+1 = µi +
(
A(W i+1)−Zi+1

)
. (9)

To update w[k]
n (as part of W ), we use the aforementioned

gradient descent or Newton method in combination with the
decoupling trick. It is noted that the inverse of the Hessian for
Newton method, in this case, is similar to the rank-2 correc-
tion in the previous section. Finally, the update of Z admits a
closed-form expression Zi+1 = ΠC

(
A(W i+1)+µi

)
, where

ΠC is the orthogonal projection onto C such that [ΠC(Z)]nk
equals Znk if |Znk| ≥ ρ

[k]
n and equals ρ[k]n otherwise.

3.3. Multi-Objective Optimization

Another approach to constrained IVA is viewing it as a multi-
objective optimization problem. In addition to minimizing
the IVA cost, one tries to maximize the similarity between the
source components and their corresponding references

min
W ,Σ

{
JIVA

(
W ,Σ

)
defined in (1)

Jref
(
W ,Σ

)
≜ −

∑M
n=1 ϵ

2(rn,y
[k]
n ).

If an optimal solution for one cost function is not opti-
mal for the other, there usually exists a Pareto optimal
set [19] that cannot decrease one cost function without in-
creasing the others. The MOO approach has been con-
sidered by Du and Fan [20] in the context of constrained
ICA. Extending their approach to our cIVA context, we
minimize a linear weighted sum of the two cost functions
JMOO

(
W ,Σ

)
= JIVA

(
W ,Σ

)
− λ

2Jref
(
W ,Σ

)
. Compared

with (3), MOO eliminates the need for threshold parame-
ters, which is often difficult to pre-determine an appropriate
value for each component and each subject. Similar to pre-
vious approaches, gradient descent or Newton method in
combination with the decoupling trick can be used to min-
imize JMOO. The gradient and Hessian of Jref are given
by ∂Jref/∂w

[k]
n = In≤Mλ( 1

T X
[k]rn)(

1
T X

[k]rn)
⊤w

[k]
n and
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⊤.
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. (A)
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Fig. 1: Visualization of (left) the full SCV covariance matrices (with N = 7, K = 20, and V = 5787), (middle) an example of
the correlation among the time courses used to mix the sources, and (right) a demonstration of the performance measure versus
the number of iterations using different IVA algorithms (averaged over 50 runs).

4. NUMERICAL RESULTS

4.1. Setting

Extraction of template sources. We use reference signals
extracted by NeuroMark [21], which includes 53 fMRI net-
works and is divided into seven functional domains based
on their anatomical and functional properties. In the hybrid
simulation experiment with varying numbers of datasets, to
reduce the runtime, we only use a subset of N = 7 templates
(with 5 from subcortical and 2 from auditory) and downsam-
pling the original data from 57878 samples to V = 5787
samples. Moreover, we normalize them to zero mean and
unit variance and denote the set of templates by {rn}Nn=1.

Hybrid data generation. Given N template sources, we
generate V observations of SCVs {Sn}Nn=1 ⊂ RK×V for
K datasets as Sn = an1Kr⊤n + bnΦ

⊤
nZ + cnZn + dnEn,

where an, bn, cn ∈ [0, 1] and dn =
√
1− a2n − b2n − c2n. In-

tuitively, an controls how close the nth source is to the ref-
erence rn, bn controls the correlation across SCVs, cn con-
trols the variability within each SCV, and dn ensures each
source has unit variance. Here, the columns of Z ∈ RNK×V

and Zn ∈ RN×V are generated from multivariate Gaussian
distributions (MGD) of dimensions NK and N , respectively.
Each MGD has zero mean and covariance matrix with diag-
onal entries equal 1. Also, Φn ∈ RNK×K is a binary ma-
trix that selects the nth row block in Z. Finally, EN is a
white noise. Figure 1-(left) depicts the SCV covariance ma-
trices of the simulated fMRI-like data. Next, for each of the
K datasets, we generate an N × N matrix A[k] that repre-
sents the time courses for different brain components. Fig-
ure 1-(middle) shows the block structure of the time-course
covariance matrix, which reflects the two functional domains
of the templates. Finally, the mixture data for each dataset is
created by adding small white noise to the product A[k]S[k].

4.2. Results

Five algorithms are used in our simulation, namely, un-
constrained IVA (IVA-G), constrained IVA with AL us-

ing gradient descent (cIVA-G-AL-GD), AL using Newton
method (cIVA-G-AL-Newton), ADMM using gradient de-
scent (cIVA-G-ADMM), and MOO using gradient descent
(cIVA-G-MOO). Figure 1-(right) illustrates the convergence
behavior of the jISI of the five algorithms through iterations
(averaged over 50 runs). It is noted that cIVA-G-AL-Newton
exhibits the fastest convergence while IVA-G converges in
the upmost iterations. There is a negligible difference among
other cIVA-G algorithms. In the following, to evaluate the
performance of these algorithms, we use the joint inter-
symbol-interference (jISI) introduced in [9], with the value
closer to 0 indicating better source separation performance.

Varying number of subjects. Figure 2-(a) and (b) demon-
strates the performance of the aforementioned algorithms
with K ∈ {10, 20, 30, 40, 50}, for fixed N = M = 7.
Overall, cIVA-G-MOO achieves the best performance in
terms of jISI while IVA-G performs the worst. When the
number of subjects K is small, cIVA-G-AL-GD and cIVA-
G-AL-Newton outperform cIVA-G-ADMM. However, when
K is sufficiently large, cIVA-G-ADMM becomes more ac-
curate and approaches the performance of cIVA-G-MOO.
Noticeably, the performance of IVA-G and cIVA-G-ADMM
improve as the number of subjects increases, whereas other
cIVA algorithms are less sensitive to K. It is also worth-
while mentioning that cIVA-G-AL-Newton yields the fastest
runtime1, which can be explained by the convergence shown
in Fig. 1-(right) and the fact that the iteration complexity of
cIVA-G-AL-Newton is the same as other algorithms.

Varying number of references. Figure 2-(c) and (d) demon-
strates the performance of the aforementioned algorithms
with M ∈ {1, 2, 3, 4, 5, 6, 7}, with fixed N = 7 and K = 20.
It can be seen that as more references are used, cIVA al-
gorithms effectively exploit the prior information about the
sources and achieve better performance. On the other hand,
the performance of IVA-G is independent of M . Similar to
the previous simulation, cIVA-G-MOO obtains the best per-

1The hardware used in the computational studies is part of the UMBC
High Performance Computing Facility (HPCF). See hpcf.umbc.edu for more
information on HPCF and the projects using its resources.



10 20 30 40 50
0

0.05

0.1

0.15

0.2
 

10 20 30 40 50

10
0

10
1

 

1 2 3 4 5 6 7
0

0.05

0.1

0.15

 

1 2 3 4 5 6 7

10
0

10
1

 

IVA-G

cIVA-G-AL-GD

cIVA-G-AL-Newton

cIVA-G-ADMM

cIVA-G-MOO

Fig. 2: Comparison of various algorithms using hybrid fMRI-like data with N = 7, and V = 5787. Plots of (a) jISI and (b)
runtime (in seconds) as K varying while fixing M = 7; and (c) jISI and (d) runtime as M varying while fixing K = 20. The
error bars represent one standard deviation calculated over 50 runs.

formance in terms of jISI, while IVA-G performs the worst.
When fewer references are used, we observe that cIVA-G-
AL-Newton performs slightly worse than cIVA-G-AL-GD,
yet still better than cIVA-G-MOO and IVA-G. We also high-
light the computational efficiency of cIVA-G-AL-Newton due
to its fast convergence.

5. CONCLUSION

In this paper, we studied different optimization approaches for
constrained independent vector analysis, namely, augmented
Lagrangian, alternating direction method of multipliers, and
multi-objective optimization. The multivariate Gaussian im-
plementation along with the use of an effective constraint
framework yields a desirable balance between performance
and computational complexity. Simulation results show that
multi-objective optimization outperforms other algorithms
in terms of separation performance while augmented La-
grangian method with the Newton optimization obtains the
most efficient runtime. Our study can be used as practical
guidelines for the selection of constrained IVA algorithms in
real fMRI data analysis.
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