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Introduction

Joint blind source separation (JBSS) has been applied to various

neuroimaging domains including multi-subject fMRI data analysis

Independent vector analysis (IVA) is a powerful approach to JBSS

that exploits the statistical dependencies across datasets

However, IVA performance degrades when the number of datasets

increases or when the level of variability among the subjects is low

Constrained IVA (cIVA) is an effective way to bypass computational

issues of IVA and improve the quality of separation by

incorporating available prior information

Contributions

Develop different optimization methods for cIVA

Show their superior performance compared with IVA in different

settings of constraints

Demonstrate cIVA algorithms provide meaningful and

interpretable results from analyzing real fMRI data

Independent Vector Analysis (IVA)
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where H(y

[k]
n ) is the entropy of the nth estimated source for the kth

dataset, I(yn) is the mutual information of the nth estimated

source component vector (SCV), and W [k] is the demixing matrix

for the kth dataset.

Constrained IVA (cIVA)
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Constrained formulation of IVA with M references (M ≤ N )
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Algorithms for Constrained IVA

Augmented Lagrangian (AL)
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AL includes a penalty term to the IVA cost to enforce the constraint

and a Lagrange multiplier term to avoid numerical instabilities

Demixing vectors can be updated via Newton direction

Alternating Direction Method of Multipliers (ADMM)

min
W ,Z

JIVA(W ) + IC(Z) s.t. A(W )−Z = 0

ADMM blends the decomposability of dual ascent with strong

convergence properties of AL

Multi-Objective Optimization (MOO)
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MOO adds a regularization cost to
maximize the similarity between the reference and the corresponding source

component

minimize the similarity between the reference and other estimated source

components

Experimental Results

Hybrid simulation — Varying number of references

Similarity factor Runtime (s)jISI

cIVA algorithms remarkably outperform (unconstrained) IVA

MOO slightly outperforms other cIVA algorithms but is more

computationally expensive

fMRI data analysis — K = 98 subjects
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Summary

MOO shows more meaningful and interpretable results when

applied to real fMRI data

MOO preserves subject variability and shows significant group

differences between healthy control (HC) and schizophrenia

patients (SZ)
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