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Introduction
▶ Blind source separation (BSS) techniques have been successfully applied to

a wide array of domains including fMRI data analysis
▶ Joint BSS (JBSS) techniques are implemented to leverage the joint

information across multiple datasets
▶ JBSS results present high variability:

• Cost functions of most JBSS algorithms are non-convex
• Closed-form solutions do not exist for these problems – iterative solutions
• No unique and perfect initialization – random initialization

▶ Reproducibility assessment of JBSS has been limited in the literature
▶ Highly consistent results do not guarantee a low bias in the estimates

Contributions
▶ Evaluate the computational reproducibility of a JBSS algorithm:

constrained independent vector analysis (cIVA)
▶ Propose a normalized measure related to the cost function to evaluate

cIVA performance in practical scenarios
▶ Present a new mechanism for selecting the model complexity based on

reproducibility and accuracy metrics
▶ Show that the model orders that balance accuracy and reproducibility

metrics provide the most meaningful and interpretable results from
analyzing real fMRI data

Independent Vector Analysis (IVA)
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▶ IVA cost function
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N∑︁
n=1

(
K∑︁
k=1

H(y [k]
n ) − I(yn)

)
−

K∑︁
k=1

log|det(W [k]) |

whereW = {W [1], . . . ,W [K]} are the demixing matrices of the K datasets,
yn is the nth estimated SCV, I(yn) is the mutual information of yn and
H(y [k]

n ) is the entropy of the nth estimated source for the kth dataset
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▶ The augmented cost function

L𝜆(W) = JIVA(W) + 𝜆
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Reproducibility and Accuracy Metrics
▶ In real applications the ground truth is unknown
▶ Reproducibilty: cross-joint-ISI

• Let G [k] = A[k]W [k] and G = 1/K ∑K
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r be the kth demixing matrix of the rth run and
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▶ Accuracy: Pairwise normalized mutual information
• Let I (y [k]

i , y [k]
j ) be the mutual information between two estimated components
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Experimental Results
▶ Results from 50 independent runs on fMRI data from 98 subjects

Experimental Results (continued)

▶ Cross-joint-ISI increases with the model order while N-MI decreases – Bias
and Variance dilemma

▶ Model orders balancing cross-joint-ISI and N-MI show clearer spatial
maps, higher temporal correlations within functional domains, and
higher power ratios

60 80 90 100 120
Power Ratio 3.74±2 3.89±2.35 3.92±2.54 4±2.82 3.97±2.83

Table: Power ratio values for different model orders
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Summary
▶ Model order selection should be guided by both reproducibility and

accuracy metrics
▶ Model orders that balance the bias-variance tradeoff provide a better

model match and more interpretable and meaningful results in fMRI data
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