A ROBUST AND SCALABLE METHOD WITH AN ANALYTIC SOLUTION
FOR MULTI-SUBJECT FMRI DATA ANALYSIS
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Introduction = Relaxing the orthogonality constraint with regularization
: 1 2 A T 2
= Source separation across multiple datasets is applied to various W?R}AI}WW IR — WX+ 1 ||WW - IMHF
neuroimaging domains including multi-subject fMRI data analysis = A simple analytic solution exists by setting the gradient to 0

= Prior knowledge about the sources or the mixing matrices can be used as
references to guide the optimization to avoid sub-optimal solutions and
increase the quality of source separation RGCA
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= Existing approaches that use references as optimization constraints suffer
from either high computational complexity or the inability to capture
variability among the datasets

= effectively retains source dependence across datasets via the common use of
reference guidance

= gutomatically aligns source components across datasets

= palances the trade-off between fitting to references and orthogonality of the
demixing matrix through A

Contributions
= Propose a simple yet efficient method, named RGCA, for source separation fMRI-like Data Simulation Results
of multiple datasets that uses source templates as references
= Establish an analytic solution that enables an efficient implementation of Joint inter-symbol-interference (jISI)

RGCA
= Demonstrate RGCA obtains competitive performance while having a
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Constrained independent vector analysis (clVA)
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where e(rm, yo) is similarity between the mth reference r,, and the mth g 107
estimated source in the kth dataset yi; and pi is the corresponding threshold :
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Reference-Guided Component Analysis (RGCA) = pt-cIVA-G performs the best regarding jISI| score thanks to the powerful

properties of the VA framework

unknown mixing matrices references . . .
= reg|VA-R performs the worst since the estimated sources are not necessarily
datasets unknown sources independent or uncorrelated
1 Ny N = RGCA performs relatively well compared with pt-clVA-G, achieving the
nighest |ISI when the variability is high

= pt-cIVA-G has the slowest runtime (quadratic in K) while RGCA vyields the

9 . — | wxw fastest (linear in K), almost 20 times faster

. . Summary
K N xV = | NxN NxV = RGCA leverages prior information on the sources (templates) as references
for the solution and can be solved analytically, facilitating fast
X Al N implementations

= Simulation with fMRI-like data illustrates the separation capability of RGCA
while capturing well the variability among the datasets
= RGCA offers a robust and scalable solution to group fMRI studies, enabling

= References is used to guide the identiication of sources in each dataset ~ . .
fast joint analysis of thousands of subjects
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= Orthogonality constraint on demixing matrix aids in interpretability FD481B 2022/012 Iil;}h
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