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ABSTRACT

Unit sphere-constrained quadratic optimization has been stud-
ied extensively over the past decades. While state-of-art al-
gorithms for solving this problem often rely on relaxation
or approximation techniques, there has been little research
into scalable first-order methods that tackle the problem in
its original form. These first-order methods are often more
well-suited for the big data setting. In this paper, we pro-
vide a novel analysis of the simple projected gradient descent
method for minimizing a quadratic over a sphere. When the
gradient step size is sufficiently small, we show that conver-
gence is locally linear and provide a closed-form expression
for the rate. Moreover, a careful selection of the step size can
stimulate convergence to the global solution while preventing
convergence to local minima.

Index Terms— large-scale optimization, unit-norm con-
straint, quadratic programming, convergence analysis

1. INTRODUCTION

This paper studies the problem of minimizing a quadratic with
a norm constraint:

min
x∈Rn

1

2
xTAx− bTx subject to ‖x‖ ≤ 1, (1)

where A ∈ Rn×n, b ∈ Rn and ‖·‖ is the Euclidean norm.1

This optimization problem arises frequently in many machine
learning and signal processing applications including contour
grouping [1], graph partitioning [2] and seismic inversion [3].

If the global solution x? of (1) lies in the interior of the
unit sphere, i.e., ‖x?‖ < 1, then x? is also the solution of
the unconstrained problem. Thus, it is more challenging to
consider the case when ‖x?‖ = 1. To that end, we restrict our
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1Generally, we can always assume A to be symmetric. Otherwise, one
can define an equivalent objective function using Â = 1

2
(A+AT ).

interest to the following problem of minimizing a quadratic
over a sphere:

min
x∈Rn

1

2
xTAx− bTx subject to ‖x‖2 = 1, (2)

In this formulation, we assume that A is symmetric, but
not necessarily positive semidefinite. Hence, the objective
function is potentially non-convex. Additionally, the norm
constraint is non-convex. Both (1) and (2) are instances of
quadratic constrained quadratic program with only one con-
straint (QCQP-1) and they have been extensively studied in
the literature. State-of-art methods for solving this type of
QCQP-1 problems in polynomial time include semidefinite
relaxation (SDR) [4] and Lagrangian relaxation [5]. However,
the problem size for these methods often grows quadratically,
making them inapplicable to large-scale problems.

From a different standpoint, problems (1) and (2) also
arise in linear algebra and optimization as the trust-region
subproblem. There have been a few extensions to large-scale
settings. In [6], Golub and von Matt leveraged the theory of
Gauss quadrature and proposed a method to approximately
solve (1) by tridiagonalizing A using the Lanczos process.
In another approach, Sorensen [7] recast the trust-region sub-
problem in terms of a parameterized eigenvalue problem and
developed an implicitly restarted Lanczos method. Related
schemes can also be found in [8, 9]. In 2001, Hager intro-
duced sequential subspace method (SSM) [10, 11], carrying
out the minimization over a sequence of subspaces that are
adjusted after each sequential quadratic programming (SQP)
iterate. Similar to the aforementioned methods, SSM relies
on Lanczos process to compute the smallest eigenvalue and
the corresponding eigenvector ofA.

In this paper, we focus on scalable first-order methods
for solving (2) directly. We leverage the use of simple gra-
dient projection and establish convergence results in the
non-convex setting of the spherically constrained quadratic
minimization problem, where most convergence guarantees
in convex optimization start to break. Our analysis provides a
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novel insight into behaviors of the algorithm in the neighbor-
hoods of the local optima. Understanding these convergence
properties enables us to (i) accommodate acceleration near
the optimum—e.g., by using optimal step size selection or
momentum methods—and (ii) identify ways of enabling con-
vergence to global solution. Finally, we present numerical
results that illustrate the theory developed in the paper.

2. SOLUTION PROPERTIES

Consider the Lagrange function

L(x, γ) =
1

2
xTAx− bTx− 1

2
γ(‖x‖2 − 1)

where γ is the Lagrange multiplier. The first-order La-
grangian conditions for optimality can be specified as{

∇xL(x, γ) = Ax− b− γx = 0,

∇γL(x, γ) = ‖x‖2 − 1 = 0.

For notational simplicity, we denote the residual by r =
Ax−b and the unit sphere by Sn−1 = {x ∈ Rn : ‖x‖ = 1}.
Formally, these conditions are given in the following lemma.

Lemma 1 (Stationary conditions). The vector x∗ is a station-
ary point of problem (2) if and only if x∗ ∈ Sn−1 and there
exists a constant γ(x∗) such that r∗ = Ax∗−b = γ(x∗)·x∗.

For the rest of this manuscript, we use the shorthand notation
γ to refer γ(x∗). Lemma 1 also implies γ = rT∗ x∗. Denote
P⊥x∗

= I − x∗xT∗ . Let λn = 0 be the zero eigenvalue corre-
sponding to the eigenvector x∗ of the matrix P⊥x∗

AP⊥x∗
and

λ1 ≥ λ2 ≥ . . . ≥ λn−1 be the remaining n − 1 eigenvalues.
Noticeably, the eigenvalues of P⊥x∗

AP⊥x∗
can be bounded by

λmin(A) ≤ λn−1 ≤ . . . ≤ λ1 ≤ λmax(A),

where λmin(A) and λmax(A) are the smallest and largest
eigenvalues of A, respectively. Moreover, the relationship
among those eigenvalues and the Lagrange multiplier pro-
vides necessary and sufficient conditions for determining the
type of a stationary point.

Lemma 2. A stationary point x∗ of problem (2) is a strict
local minimum if and only if γ(x∗) < λn−1(x∗). Further-
more, x? is a global minimizer of problem (2) if and only if
γ(x?) ≤ λmin(A).

Due to space limitation, we provide proofs of our lemmas at
https://trungvietvu.github.io/files/MLSP19 Appendix.pdf.

Example 1. Figure 1 demonstrates various cases where there
are different numbers of stationary points. As an exemplifica-
tion, let us examine the derivation of the problem in Fig. 1(b):

min
x1,x2

1

2
(4x2

1 + x2
2)− 2x1 s.t. x2

1 + x2
2 = 1.

For each stationary point x∗, the matrix P⊥x∗
AP⊥x∗

has one
zero eigenvalue corresponding to the eigenvector x∗, and the
other non-zero eigenvalue λ1 = λn−1 (since n = 2) lies be-
tween λmin(A) = 1 and λmax(A) = 4. Omitting the detailed
calculation, we list the four stationary points of this problem
as follows: (i) a global maximum at [x1, x2] = [−1, 0] with
γ = 6, λ1 = 1; (ii) a local maximum at [x1, x2] = [1, 0]
with γ = 2, λ1 = 1; and (iii) 2 local (also global) minima at
[x1, x2] = [ 2

3 ,±
√

5
3 ] with γ = 1, λ1 = 8

3 .

3. THE PROJECTED GRADIENT ALGORITHM

The projected gradient descent approach (see Algorithm 1)
starts at an initial point x(0), then performs the update

x(t+1) = fα(x(t)) = PSn−1

(
x(t) − α(Ax(t) − b)

)
, (3)

where α > 0 is the step size and PSn−1(·) : Rn → Rn is the
spherical projection uniquely given by

PSn−1(x) =

{
x
‖x‖ if x 6= 0,

e if x = 0,

with e ∈ Sn−1 such that e and Ae − b are not collinear.
The definition of projection at 0 is just for numerical issues
when the algorithm encounters the origin at some iteration. In
practice, we can choose e to be one of the natural basis, i.e.,
[1, 0, . . . , 0]. Next, let us consider some important properties
associated with Algorithm 1.

Definition 1. A fixed point of fα is defined as any vector x̄ ∈
Rn such that

fα(x̄) = PSn−1

(
x̄− α(Ax̄− b)

)
= x̄.

Lemma 3. The vector x̄ is a fixed point of fα if and only
if x̄ ∈ Sn−1 and there exists a constant γ < 1

α such that
r̄ = Ax̄− b = γx̄.

Proof. Since x̄ is a fixed point of fα, we have

x̄ = fα(x̄) = PSn−1

(
x̄− α(Ax̄− b)

)
.

Consequently, x̄ ∈ Sn−1. Furthermore, if x̄− α(Ax̄− b) =
0, then x̄ = PSn−1(0) = e. But this contradicts with the
non-collinearity of e and Ae − b. Thus, it must be the case
that x̄ − α(Ax̄ − b) 6= 0, and hence x̄ = x̄−αr̄

‖x̄−αr̄‖ . There
exists a constant γ such that r̄ = γx̄. Substituting back into
the fixed-point equation yields

x̄ =
(1− αγ)x̄

|1− αγ| ‖x̄‖
=

1− αγ
|1− αγ|

x̄

‖x̄‖
= sign(1− αγ) · x̄.

Therefore, the sign of 1− αγ must be 1 or 1− αγ > 0.

From Lemma 2 and 3, we can establish the necessary and
sufficient conditions for a fixed point of fα to be a stationary
point as follows.
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Fig. 1: Examples of minimizing a quadratic over a sphere. Stationary points are given in red stars. In 2D scenario, they can be
either local minima or local maxima (a-c). It is also possible that a local optimum lies in a continuum of optima (d).

Algorithm 1: Projected Gradient Descent (PGD)

1: Initialize x(0) ∈ Sn−1

2: for t = 0, 1, . . . do
3: z(t+1) = x(t) − α(Ax(t) − b)
4: x(t+1) = PSn−1(z(t+1))

Corollary 1. The vector x∗ is a stationary point of problem
(2) if and only if there exists α > 0 such that x∗ is a fixed
point of fα.

Example 2. Continued from Example 1, we illustrate fixed
points with different step sizes in Fig. 2. When α is small
enough, all stationary points can be fixed points. As α in-
creases, only stationary points with the multiplier γ < 1/α
remains to be fixed points of fα. Interestingly, while any con-
vergence point of Algorithm 1 with step size α is a fixed point
of the iterated function fα, the vice versa is not true: the
global maximum at [x1, x2] = [−1, 0] is a fixed point of fα,
for α < 1/6, but as can be seen in the next section, it is not a
convergence point of the algorithm.

4. CONVERGENCE ANALYSIS

In this section, we present our result on the local uniform con-
vergence of Algorithm 1 with a certain choice of step size
to a strict local optimum. The convergence is shown to be
linear and the asymptotic rate is given in a closed-form ex-
pression. The challenges come the non-convexity of the norm
constraint and (potentially) the negative curvature of the ob-
jective function. Let us begin with the analysis of the projec-
tion operator.

Lemma 4 (Taylor series expansion of the projection). Let
x ∈ Rn be a nonzero vector and δ be a small perturbation

such that ‖δ‖ � ‖x‖. Then,

PSn−1(x+ δ) = PSn−1(x) + 1
‖x‖

(
I − xxT

‖x‖2

)
δ +O

(
‖δ‖2

)
.

Now, considering the convergence of Algorithm 1 in the re-
gion near a strict local minimum x∗ where r∗ = Ax∗ − b =
γx∗. Denote δ(t) = x(t) − x∗ and reorganize the update
equation (3) as

δ(t+1) = PSn−1

(
x∗ − α(Ax∗ − b) + (I − αA)δ(t)

)
− x∗

= PSn−1

(
(1− αγ)x∗ + (I − αA)δ(t)

)
− PSn−1

(
(1− αγ)x∗

)
.

Substituting x = (1 − αγ)x∗ and δ = (I − αA)δ(t) into
Lemma 4 yields

δ(t+1) =
1

‖(1− αγ)x∗‖
(
I − (1− αγ)x∗(1− αγ)xT∗

‖(1− αγ)x∗‖2
)

· (I − αA)δ(t) +O
(
‖δ(t)‖2

)
.

Assume the step size is chosen such that αγ < 1, and recall
that P⊥x∗

= I − x∗xT∗ for ‖x∗‖ = 1. The recursion can be
rewritten as

δ(t+1) =
1

1− αγ
P⊥x∗

(I − αA)δ(t) +O
(
‖δ(t)‖2

)
. (4)

The stability of a general nonlinear difference equation of
the form xk+1 = Txk + o(

∥∥xk∥∥) has been well-studied in
[12, 13]. In particular, let ρα be the spectral radius of (1 −
αγ)−1P⊥x∗

(I − αA), i.e., the largest absolute value of its
eigenvalues. If ρα < 1, then the series {δ(t)} approaches
zeros with sufficiently small δ(0), where

‖δ(t)‖ ≤ K‖δ(0)‖
(
ρα + o(1)

)t
.

Therefore, to prove the local convergence of the PGD algo-
rithm, it is sufficient to show that ρα < 1. We present our
main result on the local uniform convergence to a strict local
minimum as follows.



(a) 0 < α < 1/6 (b) 1/6 < α < 1/2 (c) 1/2 < α < 1 (d) α > 1

Fig. 2: Stationary points (red stars) versus fixed points (blue circles) with different step size α in optimizing the quadratic
objective 1

2 (4x2
1 + x2

2)− 2x1 over the unit circle. Dashed lines are the contour levels of the objective value.

Definition 2. Algorithm 1 with step size α converges lo-
cally uniformly to x∗ if and only if there exists a constant ε
such that for any x(0) satisfying

∥∥x(0) − x∗
∥∥ ≤ ε, we have∥∥x(t) − x∗

∥∥ ≤ ε, ∀t = 0, 1, . . . and lim
t→∞

∥∥∥x(t) − x∗
∥∥∥ = 0.

Theorem 1. The vector x∗ is a strict local minimum of prob-
lem (2), i.e. γ < λn−1, if and only if there exists α > 0
such that Algorithm 1 with step size α converges locally uni-
formly to x∗. Furthermore, for any step size α > 0 such that
α(λ1 + γ) < 2, the sequence {x(t)} satisfies

‖x(t) − x∗‖ ≤ K‖x(0) − x∗‖
(
ρα + o(1)

)t
,

for some constant K > 0 and ρα = max1≤i≤n−1
|1−αλi|
1−αγ .

The proof of Theorem 1 is given in the appendix. The theorem
reveals PGD converges to a local minimum at an asymptotic
linear rate ρα. Note that in our problem, A is not necessarily
PSD, meaning λi could be negative. To facilitate acceleration,
one can speed up the convergence by optimizing over the step
size α.

Lemma 5. The optimal rate of local convergence and the op-
timal step size for Algorithm 1 are given by{
ρ∗ = λ1−λn−1

λ1+λn−1−2γ , α∗ = 2
λ1+λn−1

if λ1 + λn−1 > 0

ρ∗ = λn−1

γ , α∗ =∞ otherwise.

Example 3. Continued from Example 2, Theorem 1 states
that the PGD algorithm only converges locally uniformly to
the two local minima at [2/3,±

√
(5)/3] with λ1 = 8

3 . Notice
that these points are fixed points of fα for α < 1. Since
λ1 = λn−1, the optimal rate is ρ∗ = 0 with step size α∗ = 3

8 .
In this case, the convergence is quadratic due to the residual
term in (4).

Global convergence of the PGD algorithm. Theorem 1 also
implies that for any step size α satisfying ρα > 1, the algo-
rithm tends to move away from the local minimum x∗. This

intuition leads us to the following strategy for step size selec-
tion: choosing α large enough such that g(α,x∗) ≥ 2, where
g(α,x∗) , α(λ1(x∗) + γ(x∗)), for all strict local minimum
x∗ except the global minimum x?.

Remark 1. Assume that there exists sufficiently large α
satisfying g(α,x?) < 2 for any global minimum x? and
g(α,x∗) ≥ 2 for any strict local minimum x∗. Then Al-
gorithm 1 with step size α converges to one of the optimal
solutions x? at an asymptotic geometric rate of ρα(x?).

5. NUMERICAL RESULTS

Motivating applications of problem (1) are the well-known
trust-region subproblem in nonlinear optimization [14], the
variational problem in structural limit analysis [15], and the
optimizing precoder method in transmitter based CDMA op-
timization [16]. For the purpose of demonstrating the theoret-
ical analysis, we will focus on numerical results for local con-
vergence of Algorithm 1 with different step sizes, and empir-
ical evidence for our conjecture about the global convergence
with an appropriate step size. In our experiment, we first gen-
erate a random symmetric matrix A of size n = 1000 such
that the smallest eigenvalue is far away from the other eigen-
values. Then, we choose one multiplier for the global solution
γ(x?) < λmin(A) and one multiplier for the local solution
γ(x∗) > λmin(A). Next, the coefficient vector b is chosen
such that bT (A− γ(x?)I)−2b = bT (A− γ(x∗)I)−2b = 1.
Finally, we compute x? = (A − γ(x?)I)−1b and x∗ =
(A− γ(x∗)I)−1b.

For local convergence, starting at an initial point x(0)

close to the local minimum x∗, we examine four PGD algo-
rithms with different step sizes:
(i) Commonly used step size: α = 1/L, where L is the spec-
tral radius ofA. This step size selection is often used in many
classic proofs of convergence in convex optimization, where
an L-smooth objective function can be guaranteed to mono-
tonically decrease through PGD iterations.
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Fig. 3: (a) Local convergence of the projected gradient methods with different step sizes for solving a unit-constrained least
squares. (b-c) Empirical evidence of the convergence to global optimum where x(0) is initialized near a local optimum and α
is chosen according to Remark 1. Dashed lines are added as an illustration for the theoretical bounds for the convergence rate
of fixed step size methods (up to a constant).

(ii) Optimal step size: α = α∗ as in Lemma 5. We choose A
and x∗ such that λ1 +λn−1 > 0, hence α∗ = 2/(λ1 +λn−1).
(iii) Projected backtracking line search: rewriting the PGD
update as generalized gradient step x(t+1) = x(t) −
αtGαt

(x(t)), where Gα(x) = 1
α

(
x− PSn−1

(
x− α(Ax−

b)
))

. Denote the quadratic objective by q(x). Starting with
α = 1, we shrink α = βα, for 0 < β < 1, while

q
(
x−αGα(x)

)
> q(x)−α(Ax−b)TGα(x)+

α

2
‖Gα(x)‖2 .

In our case, this backtracking condition can be simplified to

Gα(x)
T
AGα(x) >

1

α
‖Gα(x)‖2 .

(iv) Exact line search: finding the step size that maximizes the
decrease in objective function

αmin = min
α>0

q
(
PSn−1(x− α(Ax− b))

)
.

As can be seen from Fig. 3(a), the convergence of PGD with
step size α = 1/L (blue) is the slowest among the consid-
ered methods, followed by the one with optimal step size
α = 2/(λ1 + λn−1) (red). Note that they both match the
asymptotic rate predicted in theory. The adaptive schemes,
namely projected backtracking (yellow) and exact line search
(magenta) perform slightly better than the optimal fixed step
size scheme.

For global convergence, we purposely initialize the al-
gorithm at the same x(0) that is close to the local mini-
mum x∗, and run the PGD algorithm with step size α =
1
2

(
2

λ1(x?)+γ(x?) + 2
λ1(x∗)+γ(x∗)

)
. It is easy to verify that

α satisfies the condition in Remark 1: g(α,x∗) < 2 <
g(α,x?). Figure 3 demonstrates the convergence of the algo-
rithm to the global minimizer x?, in terms of the distance to
the solution (b) and the decrease in the objective value (c). In
the first 5000 iterations, the algorithm tries to escape from the

local minimum. Then it experiences a period of fluctuation
before getting attracted by the global minimum. Notice that
when it reaches the neighborhood of x?, (monotonic) linear
convergence is observed. 2

6. CONCLUSIONS AND FUTURE WORK

We analyzed the projected gradient descent approach to min-
imizing a quadratic over a sphere. We showed that the al-
gorithm always converges linearly to a strict local minimum
in its neighborhood. Further, we provided the closed-form ex-
pression for convergence rate and identified ways of achieving
optimal rate of convergence near the optimum. Our analysis
can be extended in the following directions: (i) minimizing a
quadratic over an ellipsoid; (ii) acceleration of gradient pro-
jection using momentum; and (iii) analysis of convergence to
a continuum of optima.

7. APPENDIX

The proof of Theorem 1 is given as follows.
[⇒] First, if Algorithm 1 converges locally uniformly to x∗,
our goal is to prove γ < λn−1. By contradiction, assume that
γ > λn−1

3. Then choosing x(0) = x∗+εun−1, where un−1

is the eigenvector corresponding to λn−1, leads to

δ(1) =
|1− αλn−1|

1− αγ
δ(0) =

1− αλn−1

1− αγ
δ(0)

⇒
∥∥∥x(1) − x∗

∥∥∥ =
∥∥∥δ(1)

∥∥∥ =

∣∣∣∣1− αλn−1

1− αγ

∣∣∣∣ ‖εun−1‖

=
1− αλn−1

1− αγ
ε > ε. (since αλn−1 < αγ < 1)

2This result is provided merely as an illustration of a typical run, not to be
considered as an empirical proof. In our experiments, we re-ran simulations
multiple times with various problem sizes and always observed convergence.

3The case γ = λn−1 leads to convergence to a continuum which we
leave as a future work.



This contradicts with the assumption that the sequence {x(t)}
lies inside the ε-vicinity of x∗.
[⇐] Conversely, we will show that if x∗ is a strict local min-
imum, then for any α > 0 such that α(λ1 + γ) < 2, Algo-
rithm 1 with step size α converges locally uniformly to x∗.
By the same argument in [13], to prove the local stability of
equation (4), it is sufficient to consider the linear equation
without the quadratic residual

δ(t+1) =
1

1− αγ
P⊥x∗

(I − αA)δ(t).

The above equation implies δ(t) = P⊥x∗
δ(t) for t = 1, 2, . . ..

Thus, we have

δ(t+1) =
P⊥x∗

(I − αA)P⊥x∗

1− αγ
δ(t) =

P⊥x∗
− αP⊥x∗

AP⊥x∗

1− αγ
δ(t)

=
(I − αP⊥x∗

AP⊥x∗
)P⊥x∗

1− αγ
δ(t) =

I − αP⊥x∗
AP⊥x∗

1− αγ
δ(t).

Now consider the matrix P⊥x∗
AP⊥x∗

. There exists an eigen-
value decomposition P⊥x∗

AP⊥x∗
= UΛUT where U =

[u1,u2, . . . ,un−1,x∗] is an orthogonal matrix and Λ =
diag(λ1, λ2, . . . , λn−1, 0). Let y(t) = UT δ(t). Then

y(t+1) = UT δ(t+1) = I−αΛ
1−αγ y

(t) =

(
I−αΛ
1−αγ

)t
y(1). (5)

In addition, since the last column ofU is x∗, we can compute
the last element of y(1) by

y(1)
n = xT∗ δ

(1) = xT∗ (I − x∗xT∗ )δ(0) = 0. (6)

From (5) and (6), we obtain∥∥∥y(t+1)
∥∥∥ ≤ max

1≤i≤n−1

∣∣∣∣1− αλi1− αγ

∣∣∣∣t · ∥∥∥y(1)
∥∥∥ .

Since x∗ is a strict local minimum, it follows from Lemma 2
that γ < λn−1 ≤ λ1. Combining with the condition αλ1 +
αγ < 2, we obtain αγ < 1. In order to show convergence, it
remains to prove the inequality

max
1≤i≤n−1

|1− αλi|
1− αγ

< 1⇔ |1− αλi| < 1− αγ, ∀ 1 ≤ i ≤ n− 1.

Indeed, this inequality stems from the fact that αλ1 +αγ < 2
and γ < λn−1 ≤ . . . ≤ λ1.
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