

On Convergence of Projected Gradient Descent for Minimizing a Large-Scale Quadratic over the Unit Sphere

Trung Vu, Raviv Raich, and Xiao Fu

School of EECS, Oregon State University, Corvallis, OR 97331-5501 USA {vutru, raich, xiao.fu}@oregonstate.edu

Motivation

- Eigen-decomposition problem
 - repeatedly solving a sequence of problems of form

$$\max_{\boldsymbol{x} \in \mathbb{R}^n} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \quad \text{s.t. } \boldsymbol{x}^T \boldsymbol{x} = 1$$

- Trust-region subproblem
 - using the quadratic model to approximate the original objective function

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{x} + \boldsymbol{x}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{x}$$

s.t. $\|\boldsymbol{x}\| \leq \Delta_k$

Algorithm Power Method

1: Initialize $x^{(0)}$ such that $[Vx]_1 \neq 0$ 2: for t = 0, 1, ... do 3: $z^{(t+1)} = Ax^{(t)}$ 4: $x^{(t+1)} = \frac{z^{(t+1)}}{\|z^{(t+1)}\|}$

Graph Partitioning as Constrained Quadratic Optimization

- Bipartition: cut a weighted, undirected graph into two subgraphs
 - roughly equals in size
 - the total weight of the cut edges is smallest
- Express the weight of a cut as a quadratic function of binary variables

Problem Formulation

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} \qquad \text{subject to } \|\boldsymbol{x}\|^2 = 1$$

- $\|\cdot\|$ is the Euclidean norm
- $A \in \mathbb{R}^{n \times n}$ is symmetric but not necessarily positive semidefinite
- Non-convex objective function with a non-convex constraint

Solution Properties

$$\mathcal{L}(x, \gamma) = \frac{1}{2} x^T A x - b^T x - \frac{1}{2} \gamma(\|x\|^2 - 1)$$

- Stationary points $\begin{cases} x_* \in S^{n-1} \\ Ax_* b = \gamma(x_*) \cdot x_* \end{cases}$
- Local minimum

$$\begin{cases} \boldsymbol{P}_{\boldsymbol{x}_*}^{\perp} = \boldsymbol{I} - \boldsymbol{x}_* \boldsymbol{x}_*^T \\ \gamma(\boldsymbol{x}_*) \leq \lambda_{n-1} (\boldsymbol{P}_{\boldsymbol{x}_*}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_*}^{\perp}) \end{cases}$$

• Global minimum $\gamma(\boldsymbol{x}_{\star}) \leq \lambda_n(\boldsymbol{A}) \leq \lambda_{n-1}(\boldsymbol{P}_{\boldsymbol{x}_{\star}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{\star}}^{\perp})$

2D-Examples

Related Work

- Quadratic Constrained Quadratic Program with only one constraint (QCQP-1)
 - semidefinite relaxation (SDR)
 - Lagrangian relaxation
 - $\rightarrow O(n^2)!$
- Trust-region subproblem
 - solvable when n is small (by matrix factorizations)
 - for large *n*, iterative methods are considered
 - Parameterized eigenvalue problem [Sorensen'97]
 - Sequential Subspace Method (SSM) [Hager'01]

Stationary Point versus Fixed Point

Convergence Analysis

• Taylor Series Expansion of the Projection

$$\mathcal{P}_{\mathcal{S}^{n-1}}(\boldsymbol{x} + \boldsymbol{\delta}) = \frac{\boldsymbol{x} + \boldsymbol{\delta}}{\|\boldsymbol{x} + \boldsymbol{\delta}\|} = \mathcal{P}_{\mathcal{S}^{n-1}}(\boldsymbol{x}) + \frac{1}{\|\boldsymbol{x}\|} \Big(\boldsymbol{I} - \frac{\boldsymbol{x}\boldsymbol{x}^T}{\|\boldsymbol{x}\|^2} \Big) \boldsymbol{\delta} + O\big(\|\boldsymbol{\delta}\|^2\big)$$

Recursion on the error vector

$$\delta^{(t+1)} = \boldsymbol{x}^{(t+1)} - \boldsymbol{x}_* = \mathcal{P}_{\mathcal{S}^{n-1}} \left(\boldsymbol{x}^{(t)} - \alpha (\boldsymbol{A} \boldsymbol{x}^{(t)} - \boldsymbol{b}) \right) - \boldsymbol{x}_*$$

$$= \mathcal{P}_{\mathcal{S}^{n-1}} \left(\boldsymbol{x}_* - \alpha (\boldsymbol{A} \boldsymbol{x}_* - \boldsymbol{b}) + (\boldsymbol{I} - \alpha \boldsymbol{A}) \delta^{(t)} \right) - \boldsymbol{x}_*$$

$$= \frac{1}{1 - \alpha \gamma(\boldsymbol{x}_*)} (\boldsymbol{I} - \boldsymbol{x}_* \boldsymbol{x}_*^T) (\boldsymbol{I} - \alpha \boldsymbol{A}) \delta^{(t)} + O\left(\| \boldsymbol{\delta}^{(t)} \|^2 \right)$$

 ρ_{α}

If $\rho_{\alpha} < 1$ and $\delta^{(0)}$ is sufficiently small, the error series behaves similar to a geometric series

Rate of Convergence

- Our results:
 - PGD converges linearly locally to any strict local minimum with appropriate choice of α
 - The asymptotic rate of convergence is given by

$$\rho_{\alpha}(\boldsymbol{x}_{*}) = \max_{1 \leq i \leq n-1} \frac{\left|1 - \alpha \lambda_{i}(\boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_{*}}^{\perp})\right|}{1 - \alpha \gamma(\boldsymbol{x}_{*})} < 1$$

• Optimizing over the step size yields faster convergence

$$\alpha_* = \operatorname*{argmin}_{\alpha>0} \max_{1 \le i \le n-1} \frac{\left|1 - \alpha \lambda_i (\boldsymbol{P}_{\boldsymbol{x}_*}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_*}^{\perp})\right|}{1 - \alpha \gamma(\boldsymbol{x}_*)} = \frac{2}{\lambda_1 (\boldsymbol{P}_{\boldsymbol{x}_*}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_*}^{\perp}) + \lambda_{n-1} (\boldsymbol{P}_{\boldsymbol{x}_*}^{\perp} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{x}_*}^{\perp})}$$

Escape from Local Minima

• For $\alpha > \frac{2}{\lambda_1(x_*) + \gamma(x_*)}$, the error series *w.r.t* x_* tends to diverge since $\rho_{\alpha} > 1$

• Define
$$g(\alpha, x_*) = \alpha(\lambda_1(x_*) + \gamma(x_*))$$

Global minimum x_{\star}

Local minimum x_*

• Conjecture:

Assume there exists sufficiently large α satisfying $g(\alpha, x_*) < 2$ for any global minimum x_* and $g(\alpha, x_*) \geq 2$ for any strict local minimum x_* . Then PGD with step size α converges to one of the optimal solutions x_* at an asymptotic geometric rate of $\rho_-\alpha(x_*)$.

Conclusion and Future Works

- Conclusion
 - showed PGD converges linearly to a strict local minimum in its neighborhood
 - provided the closed-form expression for asymptotic convergence rate
 - identified ways of achieving optimal rate of convergence near the optimum
- Future works
 - minimizing a quadratic over an ellipsoid
 - acceleration of gradient projection using momentum
 - analysis of convergence to a continuum of optima

THANK YOU!

References

- 1. Danny C Sorensen, "Minimization of a large-scale quadratic function subject to a spherical constraint," *SIAM Journal on Optimization*, vol. 7, no. 1, pp. 141–161, 1997.
- 2. William W Hager, "Minimizing a quadratic over a sphere," *SIAM Journal on Optimization*, vol. 12, no.1, pp. 188–208, 2001.