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ABSTRACT

In this paper, we introduce an adaptive step size schedule that
can significantly improve the convergence rate of momentum
method for deconvolution applications. We provide analysis
to show that the proposed method can asymptotically recover
the optimal rate of convergence for first-order gradient meth-
ods applied to minimize smooth convex functions. In a con-
volution setting, we demonstrate that our adaptive schedule
can be implemented efficiently without adding computational
complexity to traditional gradient schemes.

Index Terms— Deconvolution, Convex Optimization,
Momentum, Rate of Convergence

1. INTRODUCTION

Deconvolution is the process of reversing the effects of con-
volution [1]. It is widely used in the areas of signal process-
ing and image processing [2, 3]. In image processing, this
term also refers to recovering the original image by deblurring
[4]. Recently there has been an increasing interest in machine
learning approaches for deconvolution including nonnegative
matrix factorization [5], sparse coding [6, 7], convolutional
dictionary learning [8, 9].

Deconvolution is usually performed by representing the
convolution in the form of a linear shift-invariant operator and
utilize a minimum mean square error as an optimization crite-
rion. From machine learning perspective, the objective func-
tion can also be extended to other loss functions like Hinge
loss or logistic regression cost function. Deconvolution can
be done on either the time domain using circulant matrices
or the frequency domain by computing the Fourier Transform
[10]. A major challenge of this inverse problem is the ill-
posed nature of continuous data that results in ill-conditioned
matrices in the optimization [11]. Several techniques have
been proposed to accomplish this using regularization the-
ory. One direct way is to compute the closed-form solution of
the problem. However, this approach is often inefficient due
to the computational complexity of the inverse operator, and
more importantly, it only works for apparently simple objec-
tive functions [4]. A more common method is to use iterative
algorithms, in which various optimization techniques can be
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exploited to find a close approximation of the solution. With
the increasing number of large-scale problems, this approach
have been shown to be very well suited to deconvolution. Be-
sides, other deconvolution techniques include recursive filter-
ing [11], wavelets [12], and neural networks [13].

The most widely used among iterative algorithms for de-
convolution is gradient descent. Although this method suf-
fers from the slow convergence rate of first-order methods, its
low cost and simplicity turn out to be very useful in practice.
On the other hand, second-order methods such as Newton-
Raphson obtain a rapid convergence rate but require the com-
putation of the Hessian and its inverse, which can be pro-
hibitively expensive for large scale problems [14]. To com-
promise, momentum method has been proposed to acceler-
ate the convergence of gradient descent while remaining the
computational complexity. This slight modification of gra-
dient descent was shown to achieve a fast convergence rate
on minimizing a smooth convex function [15]. Nevertheless,
while multiple approaches are available for choosing optimal
step sizes in gradient descent (e.g., backtracking line search),
little is known for step size selection in momentum method
when prior knowledge of the function curvature is limited.

To address this issue, we propose an adaptive schedule
that uses the gradient information to compute the step size for
momentum method at each iteration accordingly. In a con-
volution setting, the special structure of the objective func-
tion allows us to implement the algorithm efficiently with-
out heavy computations of the Hessian. We provide analysis
to show that our method asymptotically recovers the optimal
convergence rate determined by the Hessian at the solution.
Compared to gradient descent methods, the proposed method
requires only twice as many as the number of operations per
iteration, while dramatically accelerates the convergence in
many cases when the objective function is ill-conditioned in
general but locally well-conditioned at the solution. Lastly,
we present a numerical evaluation that verifies the effective-
ness of the proposed approach and suggest potential applica-
tions to other domains.

2. PRELIMINARY

Consider the problem of minimizing a twice differentiable,
smooth and strongly convex function f(x) : Rd → R. In
particular, lI � ∇2f(x) � LI , ∀x. We shall denote by x∗



the unique solution of this optimization problem and f∗ =
f(x∗). We further assume that λ1 and λd are the largest and
smallest eigenvalues of the Hessian at x∗, respectively. Thus,
we define the global condition number of f as r = L

l , and the
local condition number of ∇2f∗ as κ = λ1

λd
. For quadratics,

these two number are the same. However, for non-quadratic
functions, κ is smaller than r. Exploiting the gap between k
and r is often an efficient way to accelerate the convergence
of iterative methods.

In gradient descent method, the solution is initialized to
x = x(0) and the following step is used to update x:

x(k+1) = x(k) − α(k)∇f(x(k)). (1)

Various algorithms have been proposed to choose the step size
α(k) in order to obtain an optimal convergence rate. One no-
table result from Nesterov regarding fixed step size gradient
descent methods is given by Theorem 2.1.

Theorem 2.1. (Theorem 2.1.15 in [16]). The gradient de-
scent method with fixed step size α(k) = 2

L+l has a global
linear convergence rate of R = r−1

r+1 = L−l
L+l , i.e.,

f(x(k+1))− f∗ ≤ L

2

(
L− l
L+ l

)2k ∥∥∥x(0) − x∗
∥∥∥2

.

Alternatively, adaptive schedules like exact and inexact line
search are generally preferred in practice. It has recently been
shown to converge at the same rateR for smooth convex func-
tions on the worst-case scenario [17]. However, beyond the
worst-case scenario, we should note that the asymptotic con-
vergence rate is generally better for non-quadratic functions,
where the objective function is locally well-conditioned, and
the asymptotic convergence rate is defined by the local condi-
tion number of the Hessian at the solution: K = κ−1

κ+1 , which
is smaller than R.

Momentum method adds a second term from the previous
iterate to the update equation of gradient descent

x(k+1) = x(k) − α(k)∇f(x(k)) + β(k)(x(k) − x(k−1)). (2)

In [18], Polyak showed that this method achieves a faster con-
vergence rate of

√
r−1√
r+1

on a quadratic by setting

α(k) =
( 2√

L+
√
l

)2

, β(k) =
(√L−√l√

L+
√
l

)2

. (3)

It is noteworthy that analyses of convergence in this case usu-
ally involve performing a change of basis on the domain size
y(k) = UT (x(k) − x∗), where U comes from the eigenvalue
decomposition∇2f∗ = UΛUT . The convergence rate is then
defined by the slowest decreasing component in y(k), denoted
by y(k)

j . Similar to gradient descent, fixing the momentum
step size does not recover the optimal convergence rate for
non-quadratic smooth convex objective function. An in-depth

analysis on different momentum regimes which is based on
the behavior of second-order dynamic systems is discussed in
[19]. The authors also suggested a restart strategy in order to
achieve an even faster convergence rate that depends on the
condition number of Hessian at solution, τ =

√
κ−1√
κ+1

. How-
ever, the proposed algorithms are based on Nesterov’s Accel-
erated Gradient method, a variant of momentum method, and
hence its motivation is rather the restarting mechanism than
choosing the optimal step sizes.

3. PROBLEM FORMULATION

In deconvolution, we are given a training set of {xm,ym}Mm=1

and the objective is to learn a convolution kernel w to mini-
mize a cost function f(w) =

∑M
m=1 C(xm∗w,ym)+Ω(w),

where Ω is a regularization term. Assume all training ex-
amples are of the same dimension n and are zero-padded
at both ends, we can denote xm = [xm(1), . . . , xm(n)]T ,
ym = [ym(1), . . . ,ym(n)]T , and w = [w(1), . . . , w(h)]T ,
where h is the window size. Let xmt = [xm(t), xm(t −
1), . . . , xm(t − h + 1)]T be the tth sliding window segment
in the mth signal. If C can be broken down to each sliding
window, the objective function is rewritten as

f(w) =

M∑
m=1

n∑
t=1

c(wTxmt,ym(t)) + Ω(w). (4)

We make a further assumption that the cost function c(a, b)
is smooth convex and the regularizer Ω(w) is smooth and
strongly convex, and both are twice differentiable with re-
spect to a and w, i.e., 0 � ∂2c

∂a∂aT � µI and λI �
d2Ω

dwdwT � γI, for µ, λ, γ > 0. Note that c(a, b) can be
a distance metric (e.g., ‖a− b‖2), a divergence metric (e.g.,∑
i

(
bi log bi

ai
+ ai − bi

)
where ai, bi > 0) or a more gen-

eral loss (e.g., log(
∑
i e
ai) −

∑
i aibi where bi ∈ {0, 1}).

Consider a logistic loss with L2-regularization for exam-
ple, c(a, b) = log(1 + ea) − ab, where b ∈ {0, 1}, and
Ω(w) = ‖w‖2, the aforementioned assumption is supported
by 0 ≤ ∂2c

∂a2 = ∂c
∂a (1 − ∂c

∂a ) ≤ 1
4 and d2Ω

dwdwT = λI . For
simplicity, we provide analysis for the case where the cost
function parameters a, b are scalars. From (4), we obtain

∇2f(w) =

M∑
m=1

n∑
t=1

∂2c

∂(wTxmt)2
xmtx

T
mt +

d2Ω

dwdwT
. (5)

In this setting, the special structure of the Hessian recalls the
autocorrelation Rx̂m

= XT
mXm, where the circulant matrix

Xm = [xTm1, . . . ,x
T
m(n+h−1)] is obtained from padding zero

to xm and x̂m is the time-reversed version of xm. If all sig-
nals are normalized to zero mean and unit variance, the Hes-
sian can be bounded by

λI � ∇2f(w) � µ
M∑
m=1

Rx̂m
+ γI ∀w. (6)



Since the power spectrum of x̂m can be expressed as the
Fourier Transform of its autocorrelation function, the maxi-
mum eigenvalue of Rx̂m

is also the maximum power spec-
trum Sx̂m

(0). Thus, (6) provides us with a decent estimate of
the function parameters: l = λ and L = µ

∑M
m=1 Sx̂m(0) +

λ. In this estimation, the lower bound depends on the choice
of the regularization factor, while the upper bound depends
on the data itself.

4. ADAPTIVE STEP SIZE SCHEDULE

Motivated by line search approach in gradient descent, this
section presents an adaptive schedule to choose the optimal
value of step size for each momentum iteration. First, we
notice that the optimal convergence rate for momentum, and
in general for first-order methods, depends on the condition
number of the Hessian at the solution. Indeed, asymptotic
analyses of convergence often assume the function can be lo-
cally approximated by a quadratic in the region near the op-
timum, and consider the rate of convergence inside this re-
gion. In case of gradient descent, recovering the optimal rate
is practically done by backtracking line search. Another in-
exact line search method stems from second-order Taylor ex-
pansion of the objective function f(w−α∇f(w)) ≈ f(w)−
α∇f(w)T∇f(w) + 1

2α
2∇f(w)T∇2f(w)∇f(w). The su-

perscripts are omitted for brevity. The step size at each itera-
tion is then determined by minimizing this quadratic function
with respect to α, yielding

α =
∇f(w)T∇f(w)

∇f(w)T∇2f(w)∇f(w)
. (7)

Since quadratic functions have the same Hessian everywhere,
it follows from Section 2 that the resulting iterates obtain the
optimal asymptotic convergence rate K inside the quadratic
region near the solution.

Naturally, we bring this intuition to the updates in mo-
mentum method. Let ∆w(k) = w(k) − w(k−1), Dk =
[∇f(w(k)),−∆w(k)], and η(k) = [α(k), β(k)]T . From
(2), we can approximate f(w(k) − Dkη

(k)) ≈ f(wk) −
∇f(w(k))TDkη

(k) + 1
2η

(k)TDT
k∇2f(w(k))Dkη

(k). Mini-
mizing this quadratic function with respect to η(k) yields

η(k) =

(
DT
k∇2f(w(k))Dk

)−1

DT
k∇f(w(k)). (8)

We can further simplify (8) as follows[
α
β

]
=

[
∇fT∇2f∇f −∆wT∇2f∇f
−∆wT∇2f∇f ∆wT∇2f∆w

]−1 [ ∇fT∇f
−∆wT∇f

]
Note that the inversion in this equation only involves a 2 ×
2 matrix, and should not be confused with the inversion in
Newton-Raphson method. More interestingly, computing this
matrix only requires the same complexity as computing the

Algorithm 1: Adaptive step size schedule for momentum.

1: Given initial guess w(0) and w(1).
2: repeat for k = 1, 2, . . .
3: ∆w = w(k) −w(k−1) . O(h)
4: ∇f =

∑
m,t

∂c
∂(wTxmt)

xmt + λw . O(Mnh)

5: for m = 1, . . . ,M , t = 1, . . . , n do . O(Mnh)
6: pmt = xTmt∇f , qmt = xTmt∆w
7: cmt = ∂2c/∂(wTxmt)

2

8: u = ∇fT∇f , v = ∆wT∇f , t = ∆wT∆w . O(h)

9: a =
∑M
m=1

∑n
t=1 cmtp

2
mt + λu . O(Mn)

10: b =
∑M
m=1

∑n
t=1 cmtpmtqmt + λv . O(Mn)

11: d =
∑M
m=1

∑n
t=1 cmtq

2
mt + λt . O(Mn)

12: α(k) = du−bv
ad−b2 , β(k) = bu−av

ad−b2 . O(1)

13: Update w(k+1) using (2). . O(h)
14: until convergence

Table 1: Computational complexity of fixed step size gradi-
ent (GD), adaptive step size gradient (AGD), fixed step size
momentum (MO), adaptive step size momentum (AMO), and
Newton’s method. ε is the relative accuracy.

Method # Ops. / Iter. Cvg. rate # Iters. needed
GD O(Mnh) r−1

r+1
r+1

2 log(1/ε)

AGD O(Mnh) κ−1
κ+1

κ+1
2 log(1/ε)

MO O(Mnh)
√
r−1√
r+1

√
r+1
2 log(1/ε)

AMO O(Mnh)
√
κ−1√
κ+1

√
κ+1
2 log(1/ε)

Newton O(Mnh3) quadratic O(1)

gradient thanks to the decomposition of ∇2f into multiple
terms of the form xxT . We propose the adaptive step size
momentum method in Algorithm 1, with L2-regularization
for simplicity.

The resulting iterates obtain a provably asymptotic con-
vergence rate τ =

√
κ−1√
κ−1

. The detailed proof is not given
here due to space limitation. The intuition is each iteration
Algorithm 1 decreases the objective function more than that
of fixed step size momentum chosen by (3). Therefore, inside
the optimal region, it converges at least as fast as fixed step
size chosen by the local parameters. Although the behavior
outside the optimal region is unclear, this adaptive schedule
is often helpful in practice.

To simplify the complexity analysis, we assume the cal-
culation of derivatives of c and Ω is O(1). Table 1 shows the
computational complexity per iteration of the proposed ap-
proach is the same as other methods, but it requires the least
number of iterations to reach a certain accuracy to the solu-
tion. The computation can even be more efficient if the win-
dow size is large enough (h ≈ n), by using the Fast Fourier
Transform to obtain O(Mn log n) complexity per iteration.
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Fig. 1: Top - an image generated by randomly inserting a
sequence of 0, 1, 0, 1. Bottom - the corresponding label series.

5. NUMERICAL EXAMPLE

In this experiment, we consider a convolutive logistic regres-
sion model for recognizing a sequence of handwritten digits.
Our goal is to illustrate the convergence of the proposed al-
gorithm and compare it with the theoretical analysis in the
previous section.

Setting. From MNIST database, we generate a dataset
of M = 10 composite images as follows. Each image of
size 28 × 150 is created by sequentially adding four 28 × 28
digit images to a zero background such that the bottom left
corner of the ith digit is chosen uniformly between positions
28(i−1) + 1 and 28i along the width of the composite image
(see Fig. 1). We create the feature vector xmt of h = 784
elements by vectorizing the 28 × 28 window centered at tth
position along the width of the mth image (n = 150). For
the purpose of illustration, we only consider images with two
digits 0 and 1. Thus, we aim to learn a classifierw for C = 3
classes 0, 1 and -1 (for non-digit positions). The parameter
w thereupon has 2352 elements (= 3× 28× 28), making the
Hessian exceedingly large and infeasible to apply Newton’s
method. Finally, the label ym(t) is determined by checking
whether the window centered at tth position matches exactly
with the digit positions. We represent the label as a vector of
class membership ym(t) = [ymt1, . . . , ymtC ]T .

Recall the multinomial logit-model is given by pmtc =

P (ymtc|xmt,w) = eymtcw
T
c xmt/(

∑C
j=1 e

wT
j xmt) and the

cost c(a, b) = log(
∑C
c=1 e

ac) −
∑C
c=1 acbc. The Hessian

can be extended from (5) as ∇2f = 1
Mn

∑
m,n(Λpmt

−
pmtp

T
mt) ⊗ xmtx

T
mt, where pmt = [pmt1, . . . , pmtC ]T

(see [20]). Since we have Λpmt
− pmtpTmt � 1

2 (IC −
11T

C+1 ), a rough estimate of the Lipschitz constant is L =
1

2Mn

∑
m Sx̂m

(0). The strong convexity constant l is con-
trolled by the L2-regularization factor λ = 10−2. Thereupon,
we implement four other methods in comparison with our
proposed method, namely fixed step size gradient descent,
adaptive step size gradient descent, fixed step size momen-
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Fig. 2: The log-scale decrease in the distance to the solution
on domain value side through iterations.

tum, and gradient descent with backtracking line search. For
fixed step size schemes, we use the optimal step sizes de-
scribed in Theorem 2.1 and Equation (3). For backtracking
line search, we set the parameters α = 0.2, β = 0.5. Our
adaptive step size schedules require no tuning parameters.

Results and analysis. Figure 2 compares the empirical
convergence of the five methods in terms of the distance to
the solution. The dash lines are added to the plot in order
to depict the theoretical convergence rate corresponding to
the global and local condition numbers given in Table 1. Not
surprisingly all the methods match their theoretical conver-
gence rates. The convergence of adaptive step size momen-
tum deems to be slightly faster than the optimal rate at the
solution (group 4), and clearly outperforms the other four
methods. Adaptive schedule applied to gradient descent also
results in a competitive convergence to backtracking line
search, i.e., purple line versus yellow line (group 2). Fixed
step size gradient descent and momentum method converge
almost at the rate predicted by the analysis (group 1 and 3).
Obviously, those approaches are slower than their adaptive
versions because they only depend on the global parameters
of the objective function and cannot recover the optimal rate
at the solution. For quadratic objectives, this distinction is
occluded by the fact that the Hessian is constant everywhere.

6. CONCLUSION

To conclude, we proposed an adaptive schedule for choosing
step size in momentum method, under deconvolution settings.
It can be readily implemented without adding computational
complexity to fixed step size schemes. We showed that our
method outperforms other aforementioned iterative methods
in terms of convergence rate. It is promising that the proposed
approach can be applied to a wide range of problems in the
domain of digital signal and image processing.
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