
Preliminary (momentum/heavy‐ball method)

 Consider the following minimization

 Momentum updates

 Polyak [2] showed that an optimal convergence rate of can be obtained on a

quadratic by using constant step sizes

 However, this is not optimal for non‐quadratic objectives, where the asymptotic
convergence is determined by the local Hessian at the solution [3].
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 Deconvolution is the process of reversing the effects of convolution.

 Common iterative algorithms: gradient descent, momentum method, and Newton‐
Raphson method [1].

 Momentum method: fast convergence, low computational cost, but requires the prior
knowledge of the function curvature in choosing the step sizes.

 We propose an adaptive schedule that uses the gradient information to compute the step
size for momentum method at each iteration accordingly.

 In a deconvolution setting, the special structure of the objective function allows us to
implement the algorithm efficiently without heavy computations of the Hessian.

 Our method asymptotically recovers the optimal convergence rate while only requires
twice the number of operations per iteration in gradient descent.

 Settings: a training set and a convolution kernel of size

 Goal: minimize the following objective function

 Assumption:

 Bounded Hessian:

 Idea: perform line search on the second‐order Taylor expansion of the objective function

 Gradient descent

 Momentum

1 – GD with 

2 – GD with backing line search and AGD 
with step size given by (2)
3 – MO with step size given by (1)
4 – AMO with step size given by (3)


