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Constrained Independent Vector Analysis with
Reference for Multi-Subject fMRI Analysis

Trung Vu*, Francisco Laport*, Hanlu Yang, Vince D. Calhoun, and Tülay Adalı

Abstract— Independent component analysis (ICA) is now
a widely used solution for the analysis of multi-subject
functional magnetic resonance imaging (fMRI) data. Inde-
pendent vector analysis (IVA) generalizes ICA to multi-
ple datasets (multi-subject data). Along with higher-order
statistical information in ICA, it leverages the statistical
dependence across the datasets as an additional type of
statistical diversity. As such, IVA preserves variability in
the estimation of single-subject maps but its performance
might suffer when the number of datasets increases. Con-
strained IVA is an effective way to bypass computational
issues and improve the quality of separation by incorpo-
rating available prior information. Existing constrained IVA
approaches often rely on user-defined threshold values to
define the constraints. However, an improperly selected
threshold can have a negative impact on the final results.
This paper proposes two novel methods for constrained
IVA: one using an adaptive-reverse scheme to select vari-
able thresholds for the constraints and a second one based
on a threshold-free formulation by leveraging the unique
structure of IVA. Notably, the proposed algorithms do not
require all components to be constrained, utilizing free
components to model interferences and components that
might not be in the reference set. We demonstrate that
our solutions provide an attractive solution to multi-subject
fMRI analysis both by simulations and through analysis of
resting state fMRI data collected from 98 subjects — the
highest number of subjects ever used by IVA algorithms.
Our results show that both proposed approaches obtain
significantly better separation quality and model match
while providing computationally efficient and highly repro-
ducible solutions.

Index Terms— independent vector analysis, constrained
IVA, multivariate Gaussian distribution, fMRI analysis.

I. INTRODUCTION

INDEPENDENT component analysis (ICA) is a blind
source separation (BSS) technique that decomposes a mul-

tivariate signal into statistically independent components. This
data-driven approach has found fruitful applications in the
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analysis of neuroimaging data including functional magnetic
resonance imaging (fMRI) [1], electroencephalography (EEG)
[2], and magnetoencephalography (MEG) [3] data. In fMRI
studies, ICA can extract either spatially or temporally indepen-
dent components corresponding to a single subject [4] while
spatial ICA has been the dominant version [5].

In generalization to analysis of multi-subject data, the group
ICA method [6] has been by far the most commonly used
approach where the multi-subject fMRI data are temporally
concatenated. Other approaches include spatial concatenation
[7] and tensor organization [8]. Once the group data is created,
typically through two levels of dimension reduction using
principal component analysis, ICA is applied to extract group-
independent components, which can be then used to compute
the subject-specific components by back-reconstruction, dual
or other flavors of regression [6], [9], [10]. The disadvantage
of group ICA, however, is that it relies on the assumption of a
common subspace among all subjects and hence, its ability to
capture subject variability might be limited. Another powerful
approach to multi-subject data analysis is independent vector
analysis (IVA), which generalizes ICA to multi-subject fMRI
analysis by exploiting the statistical dependencies across the
subject datasets [11]–[13]. IVA has been shown to perform
well in capturing subject variability [14], [15] and is competi-
tive with ICA which has been extensively studied in this regard
[16]. Additionally, as a by-product, dependent sources across
the subjects are automatically aligned in IVA, avoiding the
permutation ambiguity existing in ICA [17]. Notwithstanding,
one major drawback of IVA is that its performance degrades
when the number of datasets increases or when the level
of variability among the subjects is very low [18], [19].
Other approaches to group studies include multiset canonical
correlation analysis (MCCA) [20], MultiView ICA [21], joint
ICA (jICA) [22], and tensor decomposition [8], [23].

ICA can be further improved in various ways by incorpo-
rating spatial constraints [24]. Following a similar strategy,
to improve the performance of IVA, constrained IVA has
been developed as an effective way to incorporate prior
knowledge (often about the sources or the mixing matrices)
while also addressing the aforementioned limitations. Similar
to constrained ICA [25], [26], constrained IVA introduces
(in)equality constraints to the cost function and utilizes the
Lagrangian framework to solve the constrained optimization
problem. A reliable set of constraints guides IVA algorithms to
avoid sub-optimal solutions and increase the quality of source
separation and of the estimated components by providing a
better model match. There have been two major types of
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prior information (references): rough templates of the sources
[25], [27] or the mixing matrix [28], [29]. However, given the
current emphasis on resting state fMRI data analyses, spatial
constraints are more commonly used and are our focus here
as well. If a reference is constructed properly, it is the one
and only one that is closest to the desired signal in terms
of a closeness measure. Therefore, when incorporated into the
IVA framework, such references carry adequate information to
distinguish the desired signal from artifacts and noise. One key
challenge in constrained IVA is selecting a threshold parameter
that enforces the closeness between the reference signal and
the desired output. A feasible threshold depends on both the
designed reference signal and the closeness measure. If the
threshold is too small, the output may produce a sub-optimal
solution. If the threshold is too large, the corresponding
constraint might not be satisfied and cause the learning to
become unpredictable. In the context of constrained ICA, Lu
and Rajapakse [25] suggested using a small threshold initially
and then gradually increasing the threshold. However, this
method requires multiple runs of the algorithm, which is
computationally expensive, especially for application to IVA.
Recently, Bhinge et al. [19] studied constrained IVA with
multivariate Laplace distributed sources (IVA-L-SOS) and pro-
posed a heuristic scheme, named parameter-tuned constrained
IVA (pt-cIVA), for selecting the constraint thresholds from a
set of pre-defined values. This adaptive tuning scheme, while
facilitating the automatic selection of threshold values, may
lead to a sub-optimal solution where the threshold is much
smaller than the desired value.

In this paper, we present two attractive solutions to multi-
subject fMRI analysis via constrained IVA with reference.
First, we address the aforementioned issue with pt-cIVA by
introducing an adaptive-reverse scheme for threshold selec-
tion, named adaptive-reverse constrained IVA (ar-cIVA). By
alternating between a conservative scheme and an assertive
scheme, our proposed approach allows the threshold values
to increase when the constraints are easily satisfied and to
decrease when the constraints are too difficult to achieve.
Furthermore, to eliminate the need for threshold selection, we
propose a second method for constrained IVA that is threshold-
free (tf-cIVA). The references are utilized as a regularization
for the IVA cost function, in which not only the similarity
between the reference and the corresponding source but also
the similarity between that reference and the other sources are
taken into account. In both methods, we leverage IVA with
multivariate Gaussian sources to exploit second-order statistics
(SOS) while utilizing the similarity between the sources and
the references to account for higher-order statistics (HOS).
Compared with IVA using a multivariate Laplace density
model, both our approaches offer significantly faster runtime,
with iteration complexity independent of the sample size.
We demonstrate the effectiveness of the proposed approaches
through a number of experiments on both simulated fMRI-
like data and real fMRI data with 98 subjects. We emphasize
that to the best of our knowledge, this is the highest number
of subjects that have been used by the IVA framework when
full correlation is taken into account as in our case. The
results show that our methods significantly outperform the

unconstrained IVA method as well as existing constrained
IVA methods. It is also promising that our approaches can
be applied to large-scale data with a few hundred to thousand
subjects, as well as other application domains in joint BSS.

The rest of this paper is organized as follows. Section II
provides a brief review of independent vector analysis, the
multivariate Gaussian sources, and reference-constrained IVA.
Then, Sections III and IV present our two proposed approaches
to constrained IVA, namely adaptive-reverse constrained IVA
and threshold-free constrained IVA, followed by the imple-
mentation details described in Section V. In Sections VI
and VII, we demonstrate the effectiveness of the proposed
algorithms in simulated fMRI-like data and real fMRI data,
respectively. Finally, Section VIII summarizes our work in this
paper and discusses potential directions for future work.

II. PRELIMINARIES

Notation. Throughout the paper, we use the notations ∥·∥F
and ∥·∥2 to denote the Frobenius norm and the spectral norm
of a matrix, respectively. Additionally, ∥·∥ is used on a vector
to denote the Euclidean norm. Boldfaced symbols are reserved
for vectors and matrices. The notation (·)⊤ denotes the trans-
pose of a matrix. The t × t identity matrix is denoted by It.
The t-dimensional vector of all zeros and the t-dimensional
vector of all ones are denoted by 0t and 1t, respectively. In
addition, the ith vector in the natural basis of Rt is denoted
by ei. The notation ⊗ denotes the Kronecker product between
two matrices and vec(·) denotes the vectorization of a matrix
by stacking its columns on top of one another. Given an n-
dimensional vector x, xi denotes its ith element and diag(x)
denotes the n × n diagonal matrix with the corresponding
diagonal entries x1, . . . , xn. Similarly, for an m × n matrix
X , the (i, j) entry of X is denoted by Xij .

A. Independent Vector Analysis (IVA)
Consider K datasets (subjects), each formed by V samples

(voxels) of linear mixtures of N independent sources

x[k](v) = A[k]s[k](v), (1)

for k = 1, . . . ,K and v = 1, . . . , V . Here, A[k] ∈ RN×N is
an invertible mixing matrix for the kth dataset and s[k](v) =

[s
[k]
1 (v), . . . , s

[k]
N (v)]⊤ is the vth sample of the corresponding

source vector. By stacking the nth source component across
K datasets, we introduce a key concept: the nth source
component vector (SCV) as a K-dimensional random vector1

sn = [s[1]n , . . . , s[K]
n ]⊤.

An appropriate multivariate probability density function (pdf)
of the SCV can take all order statistical information within
and across the K datasets into account. The goal of IVA is
to identify the independent SCVs via the estimation of K

demixing matrices of the form W [k] = [w
[k]
1 , . . . ,w

[k]
N ]⊤ ∈

RN×N . Denote y[k](v) = W [k]x[k](v) as the vector con-
taining N estimated sources for the kth dataset. The nth

1For convenience, we use the same symbol s
[k]
n to denote the random

variable. The samples of s[k]n are indicated by the index v in s
[k]
n (v).
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estimated SCV corresponding to the sample index v is given
by yn(v) = [y

[1]
n (v), . . . , y

[K]
n (v)]⊤ ∈ RK . Assuming the

samples are independently and identically distributed (iid) and
using the maximum likelihood principle [13], one can write
the IVA cost as minimizing the negative log-likelihood w.r.t.
W = {W [k]}Kk=1 and Σ = {Σn}Nn=1

JIVA(W ,Σ) ≜ − 1
V

∑
v,n

log pn(yn(v) | Σn)−
∑
k

log|detW [k]|,

(2)

where pn denotes the pdf of the nth SCV. In this formulation,
there are no restrictions on the W [k] beyond being invertible.

The multivariate Gaussian distribution (MGD) provides an
attractive solution to model SCV pdfs in terms of complexity
and allows taking full SOS into account. Assuming each esti-
mated SCV yn follows an MGD with zero mean and covari-
ance matrix Σn ∈ RK×K , the IVA cost in (2) can be rewritten
as (3) in Table I, where X [k] = [x[k](1), . . . ,x[k](V )] is
the N × V data matrix. In [12], Anderson et al. study the
theoretical properties (e.g., local stability and identifiability
conditions) of the IVA framework with MGD source model,
i.e., IVA-G, and demonstrate its effectiveness in joint BSS.

In application to fMRI analysis, since underlying sources
are more likely to be super-Gaussian [13], [18], the use of
only SOS might come across as a limitation. For example,
the multivariate Laplace distribution (MLD) has been shown
to provide a better model match to fMRI sources [5], [19].
However, this approach is computationally expensive since its
iteration complexity depends on the number of data samples.
In multi-subject fMRI data analysis, IVA with MLD methods
such as IVA-L-SOS and its constrained variants have only
been applied to medium-scale settings of no more than 64
subjects and 20 components [30]. In this work, we use a larger
dataset of 98 subjects and select an order of 60 components.
We demonstrate how to guide the estimation by introducing
reference signals and how the model match is maintained
while still achieving computational efficiency. In subsequent
sections, we will simply refer to the IVA-G cost in (3) as IVA
cost for convenience.

B. Constrained IVA with Reference

In constrained IVA, we consider a set of reference signals
{rn}Mn=1 ⊂ RV (M ≤ N) that can be used as prior constraints
to guide the separation of sources. For the kth dataset, the nth
estimated source is given by y

[k]
n = [y

[k]
n (1), . . . , y

[k]
n (V )]⊤.

The idea here is to ensure that rn has a higher correlation
with its corresponding SCV than any other SCVs in the same
dataset, i.e.,

ϵ(rn,y
[k]
n ) > ϵ(rn,y

[k]
m ) ∀m ̸= n, (6)

where ϵ : RV × RV → [0, 1] is some similarity measure,
n = 1, . . . ,M , and m = 1, . . . , N . As an example, ϵ(·) can
be chosen as the absolute value of Pearson correlation

ϵ(a, b) = |corr(a, b)| =
∣∣a⊤b

∣∣
∥a∥ ∥b∥

. (7)

A common approach to implementing such constraints is via a
pre-defined threshold parameter ρ [25], [26], [31]. By selecting
an appropriate value of ρ such that

ϵ(rn,y
[k]
n ) ≥ ρ > ϵ(rn,y

[k]
m ) ∀m ̸= n, (8)

only one independent component is extracted as the closest
one to the reference signal. Thus, the thresholding-constrained
formulation is proposed in [31] as

min
W ,Σ

JIVA(W ,Σ) s.t. ϵ(rn,y[k]
n ) ≥ ρn ∀n, (9)

where n = 1, . . . ,M and k = 1, . . . ,K. The major dis-
advantage of formulation (9) is that the best values for the
threshold parameters are often unknown in practice. If ρn is
too small, the output may produce a different component. If ρn
is too large, the estimate might not yield a desired component
because the corresponding constraint causes the learning to
become unpredictable. Hence, an ideal value of ρn is the one
that is closest to the similarity between the reference rn and
the true source s

[k]
n , i.e., ϵ(rn, s

[k]
n ). To address this issue, an

adaptive scheme to select ρ, pt-cIVA, has been proposed in
[19]. The idea is to use a set of predefined thresholds P and
at each iteration, pick a value that is closest to the similarity
value between the reference rn and the estimated sources y[k]

n :

ρn = argmin
ρ∈P

min
1≤k≤K

∣∣∣ρ− ϵ(rn,y
[k]
n )
∣∣∣ . (10)

While this heuristic was shown to improve the performance
of constrained IVA [19], it may lead to a sub-optimal solution
where ρn can be much smaller than ϵ(rn, s

[k]
n ). Indeed, if at

some iteration, the threshold is always selected such that it is
smaller than or equal to ϵ(rn,y

[k]
n ), the constraints in (9) will

be automatically satisfied and will have no effect on increasing
ϵ(rn,y

[k]
n ) in the next iteration. Another issue with formulation

(9) is that the threshold ρn does not depend on k and hence,
does not consider the case where ϵ(rn,y

[k]
n ) has a different

threshold from ϵ(rn,y
[l]
n ), for k ̸= l. To accommodate the

variability among the subjects within an SCV, one needs to
impose different thresholds for different levels of closeness
ϵ(·) in the constraints.

III. ADAPTIVE-REVERSE CONSTRAINED IVA
We introduce an adaptive-reverse scheme for selecting the

constraint thresholds that significantly improves the perfor-
mance of pt-cIVA while maintaining the same computational
complexity per iteration. First, we extend (9) to a more flexible
constrained formulation that takes into account the subject
variability across components

min
W ,Σ

JIVA(W ,Σ) s.t. ϵ(rn,y[k]
n ) ≥ ρ[k]n ∀n, k. (11)

It is emphasized that (9) uses the same threshold ρn for all
K subjects in the nth component while (11) uses different
thresholds ρ[k]n for each subject in the nth component. Second,
we propose an adaptive scheme to select ρ

[k]
n that alternates

between two principles: (i) choosing the smallest value that
does not satisfy the constraint

ρ[k]n = argmin{ρ ∈ P | ρ > ϵ(rn,y
[k]
n )}, (12)
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TABLE I: Formulas of the IVA cost function, the augmented Lagrange function, and its gradient.

JIVA(W ,Σ) =
NK

2
log(2π) +

1

2

N∑
n=1

log |det(Σn)|+
1

2

N∑
n=1

K∑
k,l=1

(e⊤kΣ
−1
n el)(w

[k]
n )⊤

( 1
V

X[k](X[l])⊤
)
w

[l]
n −

K∑
k=1

log|det (W [k])| (3)

Lγ,ρ(W ,Σ,µ) = JIVA(W ,Σ) +
1

2γ

M∑
n=1

K∑
k=1

((
max

(
0, µ

[k]
n + γ

(
ρ
[k]
n − ϵ(rn,y

[k]
n )
)))2

− (µ
[k]
n )2

)
(4)

∂Lγ,ρ

∂w
[k]
n

=
K∑
l=1

( 1
V

X[k](X[l])⊤
)
w

[l]
n e⊤l Σ

−1
n ek −

d
[k]
n

(d
[k]
n )⊤w

[k]
n

− In≤M max
(
0, µ

[k]
n + γ

(
ρ
[k]
n − ϵ(rn,y

[k]
n )
))

X[k] ∂ϵ(rn,y
[k]
n )

∂y
[k]
n

(5)

Algorithm 1: Adaptive-Reverse Constrained IVA (ar-cIVA)

Input: {X [k]}Kk=1 ⊂ RN×V , {rn}Mn=1 ⊂ RV , γ, µmax

Output: W ,Σ
1: Set the current scheme to (12)
2: repeat
3: for n = 1, . . . , N do
4: for k = 1, . . . ,K do
5: Compute Σ̂−1

n

6: Update µ
[k]
n using (15) and (16)

7: if µ[k]
n ≥ µmax then

8: Switch the current scheme to (13)
9: else if µ[k]

n ≤ 0 then
10: Switch the current scheme to (12)
11: else
12: Keep the current scheme
13: Select ρ[k]n based on the current scheme
14: Compute dw

[k]
n = ∂Lγ,ρ/∂w

[k]
n using (5)

15: Project d̃w[k]
n = (In −w

[k]
n (w

[k]
n )⊤)dw

[k]
n

16: Update w
[k]
n = w

[k]
n − η

d̃w[k]
n

∥d̃w[k]
n ∥

17: Normalize w
[k]
n =

w[k]
n

∥w[k]
n ∥

18: Update [Σ̂n]kl for l = 1, . . . ,K

19: until convergence

and (ii) choosing the largest value that satisfies the constraint

ρ[k]n = argmax{ρ ∈ P | ρ ≤ ϵ(rn,y
[k]
n )}. (13)

On the one hand, (12) creates an over-tight constraint that
forces the value of ϵ(rn,y

[k]
n ) to increase after each iteration.

On the other hand, (13) creates a feasible problem where each
constraint is always satisfied. Using the appropriate principle
at each iteration, the desired value of the threshold — that is
close to ϵ(rn, s

[k]
n ) — can be recovered.

A. Augmented Lagrangian Method with Decoupling

To solve (11) as an inequality-constrained optimization, we
utilize the augmented Lagrangian method and a decoupling
method that enables sequential updates of each row of indi-
vidual demixing matrices. The augmented Lagrangian function
is given in (4), where µ ∈ RM×K is the Lagrange multiplier
and γ > 0 is the scalar penalty parameter as in [32] where
the framework is used for ICA. It can be shown [33] that
for sufficiently large γ, the solution of (4) coincides with the

solution of (11). At the ith iteration, we update the parameters
to minimize Lγ,ρ based on their current values as follows

(W i+1,Σi+1) = argminW ,ΣLγ,ρ

(
W ,Σ,µi

)
, (14)

(α[k]
n )i+1 = (µ[k]

n )i + γ
(
(ρ[k]n )i − ϵ(rn, (y

[k]
n )i+1)

)
, (15)

(µ[k]
n )i+1 = max

(
0, (α[k]

n )i+1
)
, (16)

where µ
[k]
n is the (n, k)-entry of µ. In (14), the value of Σn

that minimizes Lγ,ρ(·) is given by

Σ̂n =
1

V

V∑
v=1

yn(v)yn(v)
⊤= argmin

Σn

JIVA(W ,Σ). (17)

Additionally, to update W , we utilize the vector gradient
method IVA-G-V in [12] and derive the gradient of the
augmented Lagrange function as follows. First, we rewrite
the term log

∣∣detW [k]
∣∣ in (3) as the sum of two terms

log|(d[k]
n )⊤w

[k]
n | + log(det(W̃

[k]
n (W̃

[k]
n )⊤))/2 where W̃

[k]
n is

the (N − 1) × N matrix obtained by removing the nth row
from W [k] and d

[k]
n ∈ RN satisfies W̃

[k]
n d

[k]
n = 0N−1. This

technique [34] is often referred to as the decoupling trick,
enabling the derivation of the gradient of JIVA w.r.t. w[k]

n

∂JIVA

∂w
[k]
n

=
1

V

V∑
v=1

x[k](v)(yn(v))
⊤Σ−1

n ek − d
[k]
n

(d
[k]
n )⊤w

[k]
n

.

The advantage of this decoupling procedure is that one can
avoid the dependence on the number of samples by rec-
ognizing that y

[k]
n (v) = (w

[k]
n )⊤x

[k]
n (v) and pre-computing

the sample covariance matrix R̂kl
x = 1

V−1X
[k](X [l])⊤ =

1
V−1

∑
t x

[k](v)(x[l](v))⊤. Second, summing the gradient of
the cost function and the gradient of the constraint, we obtain
the gradient of the augmented Lagrange function Lγ,ρ w.r.t
to w

[k]
n in (5), for n = 1, . . . , N and k = 1, . . . ,K. In this

formula, In≤M is the indicator of the event n ≤ M . When
the Pearson correlation is used as the similarity measure, the
last term in (5) can be further simplified and can be computed
independent of the sample size V . Finally, certain refinements
as suggested in [35] (e.g., projecting the gradient onto the
tangent space to the unit sphere, normalizing the gradient
norm, and projecting the demixing vector back onto the unit
sphere) are incorporated into the algorithm.

B. Adaptive-Reverse Scheme for Constraint Thresholds
We can now define the adaptive-reverse scheme for selecting

the values of ρ
[k]
n . In (15) and (16), we note that the value

of µ
[k]
n increases when the constraint ϵ(rn,y

[k]
n ) ≥ ρ

[k]
n is
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violated and decreases when the constraint holds. Therefore,
using the argmin scheme (12) will increase the value of the
Lagrange multipliers toward +∞ while using the argmax
scheme (13) will decrease their values toward 0. To combine
the advantage of both approaches, we propose an adaptive-
reverse scheme that determines the scheme based on the values
of the Lagrange multipliers. In particular, when µ

[k]
n exceeds

a certain value µmax, we switch from the argmin scheme to
the argmax scheme. Conversely, when µ

[k]
n goes down to 0,

we switch from the argmax scheme to the argmin scheme. We
summarize the adaptive-reverse for constrained IVA (ar-cIVA)
in Algorithm 1.

IV. THRESHOLD-FREE CONSTRAINED IVA

In this section, we propose a novel formulation of con-
strained IVA that eliminates the need for threshold parameters.
Our idea is to maximize the similarity between the refer-
ence rn and the corresponding estimated source component
(corresponding-component), and at the same time, promote the
dissimilarity between that reference rn and the other estimated
component y[k]

m (cross-component), for all m ̸= n. Thus, we
introduce a regularization term

Jref(W ) =

M∑
n=1

K∑
k=1

(
M∑

m=1
m ̸=n

ϵ2(rn,y
[k]
m )− ϵ2(rn,y

[k]
n )

)
. (18)

The new objective function is hence a linear sum of the IVA
cost function and the regularization

Lλ(W ,Σ) = JIVA(W ,Σ) +
λ

2
Jref(W ), (19)

where λ > 0 is the regularization parameter. By selecting an
appropriate value for λ (via parameter tuning), we can balance
the trade-off between the IVA cost (minimizing the correlation
between the source components) and the regularization term
(maximizing the correlation between the components and the
reference signals). Our formulation in (19) is similar to the
multi-objective function optimization framework in [36]. In
their work, Du and Fan introduced an improved version of
constrained ICA by optimizing two conflicting cost functions:
one that maximizes the independence among the components
and one that maximizes the closeness between the components
and their corresponding references. Nonetheless, compared
with the approach in [36], our proposed method not only
generalizes constrained ICA to constrained IVA but also intro-
duces the cross-component similarity to the objective function.
This promotes the solution in which there is one and only one
independent component that is closest to each reference.

From (18), the gradient of Jref(·) w.r.t. ∂w
[k]
n , for n =

1, . . . , N and k = 1, . . . ,K, is given by

∂Jref

∂w
[k]
n

= 2In≤M

( M∑
m=1
m ̸=n

ϵ(rm,y[k]
n )

∂ϵ(rm,y
[k]
n )

∂w
[k]
n

− ϵ(rn,y
[k]
n )

∂ϵ(rn,y
[k]
n )

∂w
[k]
n

)
. (20)

Algorithm 2: Threshold-Free Constrained IVA (tf-cIVA)

Input: {X [k]}Kk=1 ⊂ RN×V , {rn}Mn=1 ⊂ RV , λ
Output: W ,Σ

1: repeat
2: for n = 1, . . . , N do
3: for k = 1, . . . ,K do
4: Compute Σ̂−1

n

5: Compute dw
[k]
n = ∂Lλ/∂w

[k]
n based on (20)

6: Update w
[k]
n using dw

[k]
n

7: Update [Σ̂n]kl for l = 1, . . . ,K

8: until convergence

Thus, the gradient of Lλ(·) is the sum of ∂JIVA/∂w
[k]
n and

λ∂Jref/∂w
[k]
n . The vector-gradient method to minimize Lλ(·),

named tf-cIVA, is described in Algorithm 2. Compared with
the thresholded formulation for constrained IVA in (11), the
regularized formulation does not require threshold parameters
as well as other hyperparameters for the augmented Lagrange
method (i.e., γ and µmax).

V. IMPLEMENTATION AND EVALUATION

Compared Methods. We compare our new algorithms against
the following methods: IVA-G-V [12] for unconstrained IVA,
cIVA-fixed for constrained IVA with fixed threshold [31], and
its adaptive thresholding version (pt-cIVA) [19]. The IVA-G-
V algorithm for the unconstrained problem can be viewed
as a baseline where no prior knowledge about the sources is
used. For pt-cIVA, we note that the proposed version in [19]
uses MLD for the SCVs, which is significantly slower than
MGD. Indeed, the IVA-L-SOS versions do not finish within 2
weeks while the IVA-G versions run for a few hours, using the
same setting in our simulation. Therefore, we reimplement pt-
cIVA with MGD to make its computational time comparable
with other methods. In addition, we use the set of pre-defined
thresholds Ppt = {0.001, 0.1, 0.2, . . . , 0.9} and the penalty
parameter γ = 3 as specified by the authors in [19]. For
ar-cIVA, we use a finer set of pre-defined thresholds Par =
{0.01, 0.02, . . . , 0.99}.2 Furthermore, we set the penalty pa-
rameter γ = 100 and the cut-off value for the Lagrange
multiplier µmax = 1. For tf-cIVA, we use a grid-search
approach to select the value of the regularization parameter
over the logarithmic scale {0.1, 1, 5, 10, 100, 1000, 10000} to
check the sensitivity of the algorithm with respect to the
choice of λ. After evaluating of values for λ and observing
the performance is stable for sufficiently large values, we pick
the ones that yield the best results to report (λ = 1 for the
simulated data and λ = 100 for the real data). All algorithms
use the same initial step size η for the gradient updates and a
decay scheme that decreases η by a factor of 0.95 when the
objective function does not decrease at a certain iteration. In
addition, the stopping criteria for all algorithms are based on

2We also tried the finer set of thresholds for pt-cIVA but there was no
significant difference. Hence, we present the results with default options for
pt-cIVA in this work.
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the change in W at each iteration [12]

max
k,n

{
1−

∣∣∣(w[k]
n )i

⊤
(w[k]

n )i+1
∣∣∣} < ϵ,

where ϵ = 10−6 throughout this work.
Evaluation metric. To evaluate the performance of different
IVA algorithms, we use the following metrics:
- Joint inter-symbol-interference (joint-ISI) is introduced in
[12], which assumes that the ground-truth mixing matrix A[k]

for the kth dataset is known. This is an extension of the
normalized inter-symbol-interference (ISI) in the context of
ICA [37], [38]. Let G[k] = W [k]A[k], for k = 1, . . . ,K,
be the global demixing-mixing matrices and |G[k]| be the
absolute matrix with the (m,n) entry being |G[k]

mn|. The joint-
ISI is defined as the ISI of the mean absolute value matrix G =
1/K

∑K
k=1|G[k]|, i.e., joint-ISI

(
G[1], . . . ,G[K]

)
= ISI(G),

where

ISI(G) =

N∑
i=1

(∑N
j=1 |Gij |

maxp |Gip|
− 1
)
+

N∑
j=1

(∑N
i=1 |Gij |

maxp |Gpj |
− 1
)

2N(N−1) .

When the sources are jointly separated for all datasets, the
estimated global matrices for all datasets should be close to
an identity matrix up to the same permutation. Thus, the joint-
ISI closer to 0 indicates better performance.
- Cross joint inter-symbol-interference (cross-joint-ISI) mea-
sures the consistency of the components across R runs. Let
W

[k]
r be the kth demixing matrix of the rth run. In [39], the

cross-joint-ISI of the ith run and the jth run is defined as

cross-joint-ISIij({W
[k]
r }R,K

r=1,k=1) = joint-ISI(P [1]
ij , . . . ,P

[K]
ij ),

where P
[k]
ij = A

[k]
i W

[k]
j and A

[k]
i = (W

[k]
i )−1. The cross-

joint-ISI of the ith run is computed by averaging all its
pairwise cross-joint-ISI values

cross-joint-ISIi =
1

R

R∑
j=1,j ̸=i

cross-joint-ISIij .

Note that cross-joint-ISI can be computed when there is no
ground truth available as it only depends on the demixing ma-
trices. On the other hand, joint-ISI requires the true demixing
matrices in its evaluation.
- Partial similarity factor (partial SF) measures the average of
the squares of the correlation between the estimated source
and the corresponding ground truth:

Partial SF =
( 1

MK

M∑
n=1

K∑
k=1

(
ϵ(s[k]n ,y[k]

n )
)2)1/2

.

The index n runs from 1 to M , meaning that only source
components with corresponding reference signals are used. A
lower value of this metric indicates poor estimation of the
sources as well as poor source alignment across the datasets.

VI. HYBRID SIMULATION RESULTS

This section compares the performance of the two proposed
methods with the three aforementioned IVA algorithms using
simulated fMRI-like data by changing the number of sub-
jects and reference signals. Our goal is to better understand
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Fig. 1: A visualization of the full SCV covariance matrix using
model (21) with N = 20,K = 20, V = 58515, µ0 = 0.1,
µ1 = 0.2, and φ = [φ1, φ2, . . . , φN ]⊤ as a linearly spaced
vector in the range [0.3, 0.9]. From (21), one can compute the
values of the 20 diagonal blocks in this matrix, ranging from
0.28 (bottom-right) to 0.76 (top-left).

the behavior of these algorithms in different types of fMRI
datasets. In the next section, we demonstrate an application
with a practical fMRI dataset.
Extraction of reference signals. We use reference signals
extracted by NeuroMark, i.e., the Neuromark fMRI 1.0 tem-
plate [40], which includes 20 fMRI networks and is divided
into seven functional domains based on their anatomical and
functional properties: the subcortical (SC), auditory (AUD),
sensorimotor (MOT), visual (VIS), cognitive control (CC),
default mode (DMN) and cerebellar (CB) domains.3 For
convenience, we denote the set of N = 20 reference signals
by {rn}Nn=1, each contains V = 58515 samples rn =
[rn(1), rn(2), . . . , rn(V )]⊤. In addition, each reference signal
is normalized to zero mean and unit variance. Finally, we note
that there is a certain level of dependency among the reference
signals, i.e., they are not absolutely independent.
Hybrid source generation. Given the reference signals, we
generate observations of SCVs {Sn}Nn=1 ⊂ RK×V for K
subjects as follows. First, we define a NK—dimensional
random vector z following multivariate Gaussian distribution
with zero mean and covariance matrix

Σz =
(
µ01N1⊤

N+ (µ1 − µ0)IN
)
⊗ 1K1⊤

K+ (1− µ1)INK ,

where 0 ≤ µ0 ≤ µ1 ≤ 1. Second, we generate V samples
of z and partitioning the data matrix into N submatrices of
dimension K × V , i.e., Z = [Z⊤

1 , . . . ,Z
⊤
N]

⊤. Third, the nth
source data matrix is formed by

Sn =
√
1− φ2

n1Kr⊤n + φnZn ∈ RK×V , (21)

where φn ∈ [0, 1] controls how close the nth source is to the
reference rn. Figure 1 depicts the SCV covariance matrices of
the simulated fMRI-like data used in this section. Specifically,

3The original template contains a total of 53 references. In the hybrid
simulation experiment with varying numbers of subjects, to reduce the
runtime, we only use a subset of 20 references (with 2 references from AU
and 3 references from each of the other 6 functional domains).
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(a) Joint-ISI
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(b) Cross-joint-ISI
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(c) Partial SF
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Fig. 2: Comparison of five different IVA algorithms for the simulated fMRI-like data with M = N = 20 and V = 58515. The
(a) joint-ISI, (b) cross-joint-ISI, (c) partial similarity factor, and (d) runtime are shown as functions of the number of subjects
K. The error bars represent one standard deviation calculated over 20 runs. For each value of K, the same mixing matrix is
used to generate the simulated fMRI-like data across 20 runs. All algorithms use the same initialization for each run. Note
that in all four plots, the purple line and the green line almost overlap and in plot (d), the red line also overlaps these two.

we choose φn to control the correlation within each SCV
varying in the range [0.3, 0.9]. While we think that this is the
most interesting scenario with different levels of correlation
within each SCV, we also tried other scenarios where the
correlation within each SCV is consistently low (or high) and
obtained similar conclusions. Due to the space limitation, we
did not include these results here.

Results. We evaluate the performance of the five aforemen-
tioned IVA algorithms with regard to the changes in (i) the
number of subjects K and (ii) the number of reference signals.
In the first experiment, the number of subjects K is varied
while the numbers of samples V , source components N , and
reference signals M are fixed. As can be seen from Fig. 2,
our two proposed algorithms, tf-cIVA (dashed green line) and
ar-cIVA (dashed purple line), significantly outperform other al-
gorithms in terms of joint-ISI, cross-joint-ISI, and partial SF. It
is noteworthy that tf-cIVA slightly outperforms ar-cIVA since
the former considers both maximizing the corresponding-
component similarity and minimizing the cross-component
similarity, while the latter only looks at the corresponding-
component similarity. As the number of subjects K increases,
the cross-joint-ISI of the unconstrained IVA (the blue dashed
line in Fig. 2-b) increases while the partial SF (Fig. 2-c) de-
creases, indicating that this method becomes less reproducible
in large-scale settings. This degradation is also noted in [19] as
the curse of dimensionality in IVA. The same phenomenon is
also observed for pt-cIVA (yellow dashed line), which verifies
our earlier discussion on the conservative nature of this method
in selecting thresholds. Interestingly, almost independent of the
number of subjects, tf-cIVA and ar-cIVA yield consistently
excellent performance. This is highlighted by the fact that
our algorithms exploit both HOS (by effectively imposing
constraints with reference signals) and SOS (via the Gaussian
source model). In terms of runtime, Fig. 2-d shows that cIVA,
ar-cIVA, and tf-cIVA are the fastest algorithms while IVA is
the slowest.

In the second experiment, we vary the number of reference
signals M while fixing the number of components N , the
number of subjects K, and the number of samples V . The
performance of the five aforementioned algorithms is shown in
Fig. 3. Overall, the two proposed algorithms, ar-cIVA (purple

dashed line) and tf-cIVA (green dashed line) yield the highest
partial similarity factors that are almost equal to 1 across
different values of M , indicating that the components cor-
responding to the M references (“constrained” components)
are estimated accurately. On the other hand, their overall
performances in terms of joint-ISI and cross-joint-ISI improve
significantly over other algorithms as M increases, indicating
the important role of the number of references used relative
to the actual number of source components. For unconstrained
IVA (blue dashed line), its performance is independent of M as
no references are used. The performance of cIVA with ρ = 0.5
(red dashed line) also improves as M increases from 4 to 16
references. However, when the number of references equals
the number of components, we observe a slight decrease in
its performance. This is because the correlation between the
source and the reference signal varies in the range [0.31, 0.81]
across components. Thus, for some components, the threshold
ρ = 0.5 cannot be satisfied. The pt-cIVA algorithm performs
worst in terms of joint-ISI, cross-joint-ISI, and partial SF.

VII. MULTI-SUBJECT FMRI DATA ANALYSIS

This section evaluates the performance of the different
algorithms on real fMRI data. Our goal is to demonstrate that
the proposed methods offer better model matches and more
interpretable results.
Data acquisition and preprocessing. We use the resting
state fMRI data set from the bipolar-schizophrenia network
on intermediate phenotypes (B-SNIP) [41], [42]. Identical
diagnostic and recruitment approaches were applied to all
recruited subjects at multiple sites (Baltimore, Chicago, Dallas,
Detroit, and Hartford). In particular, in this study, we employ
the data collected from the Baltimore site and select K =
98 subjects: 49 healthy controls (HCs) and 49 randomly
selected schizophrenia patients (SZs). A single 5-minute run
was captured for each subject. The individuals involved in
the study were instructed to maintain an open-eyed state,
concentrate on a crosshair presented on a display screen,
and remain still throughout the scanning process. Moreover,
a custom-built head-coil cushion was used to restrict head
movements. Alertness during the scan was confirmed imme-
diately afterward, and the procedure was repeated if needed.
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Fig. 3: Comparison of five different IVA algorithms for the simulated fMRI-like data with N = 20, K = 40, and V = 58515
as the number of reference signals M increases. The error bars represent one standard deviation calculated over 20 runs. For
each value of R, the mixing matrix remains the same across 20 runs, while the hybrid sources are generated independently
for each run. All algorithms use the same initialization for each run. Note that in plot (c), the purple line and the green line
almost overlap.

These instructions helped reduce head motion and prevented
subjects from falling asleep. The fMRI data were captured by
a 3-Tesla Siemens Triotim scanner with TE = 30 ms, TR =
2.21 s, flip angle = 70◦, acquisition matrix = 64 × 64mm,
and voxel size = 3.4 × 3.4 × 3 mm3. For each subject,
134 time points were obtained. We removed the first 3 time
points to address the T-1 effect and each subject’s image
data was preprocessed including motion correction and slice-
time correction. The corrected data were warped into the
standard Montreal Neurological Institute (MNI) space through
an echo-planar imaging template and then were resampled to
3 × 3 × 3 mm3 isotropic voxels. The resampled fMRI data
were further smoothed using a Gaussian kernel with a full
width at half maximum (FWHM) equal to 6 mm. In addition,
in order to remove non-brain voxels and flatten the data, each
subject image was masked, yielding an observation vector of
V = 58515 voxels for each of the T = 131 time points.

Results. We evaluate the performance of the five aforemen-
tioned IVA algorithms when applied to real fMRI data. For this
purpose, as in the experiments developed for simulated fMRI-
like data, we use the functional templates extracted by Neu-
romark, specifically the neuromark fMRI 1.0 template [40],
which is composed of 53 resting-state networks (RSNs) from
seven different functional domains: SC (5 RSNs), AUD (2
RSNs), MOT (9 RSNs), VIS (9 RSNs), CC (17 RSNs), DMN
(7 RSNs) and CB (4 RSNs). Each of these RSNs is employed
as a reference signal by the IVA algorithms. In addition, since
fMRI data might also contain signals not of interest such as
motion-related signals, scanner-related signals, or noise due
to magnetic resonance acquisition, among others, we utilize a
larger number of components than reference signals to capture
the interferences and components that would not necessarily
match to a specific functional template. Without the flexibility
to have more components than references (N > M ), the
estimated sources might be noisy and inaccurate. In our
experiments, we noted N = 60 as a good number that balances
the trade-off between the model complexity and flexibility.

The obtained results by the different IVA algorithms are
shown in Fig. 4. The cross-joint-ISI values for 50 independent

runs are depicted in Fig. 4-a. Unconstrained IVA and pt-cIVA
present higher values than the rest of the algorithms, achieving
less consistent results across all the runs. It can also be seen
that the fixed-threshold scheme, cIVA with ρ = 0.5, is the
second-best algorithm in terms of cross-joint-ISI. However,
if the threshold value is modified, cIVA with ρ = 0.3,
its performance decreases, making it clear that the correct
selection of a threshold value is of paramount importance for
the performance of these algorithms. On the other hand, we
can also observe that the proposed adaptive-reverse scheme,
ar-cIVA, also offers low cross-joint-ISI values with small vari-
ance across runs and significantly outperforms the previously
proposed adaptive cIVA algorithm (pt-cIVA). We would like
to highlight that ar-cIVA selects the thresholds automatically
across subjects and components while cIVA with a fixed ρ
requires a careful selection of threshold values. Finally, we
can see that the proposed algorithm tf-cIVA outperforms the
rest of the algorithms, achieving the most consistent results
with the lowest cross-joint-ISI values. The spatial maps of
three different RSNs (AUD, DMN and VIS) obtained by the
most consistent run of this algorithm (tf-cIVA) are shown in
Fig. 4-c as an example.

Another useful measure to quantify the quality of estimation
of the fMRI components is the power spectra of RSN time
courses and the power ratio between low-frequency (< 0.1Hz)
and high-frequency (> 0.15Hz) bands. Considering the fre-
quencies of neural-activity related BOLD signals are generally
below 0.15 Hz, low power ratio values are typically associated
with cardiac and respiratory noise, while high power ratio
values mostly indicate BOLD activity [43]. The power ratio for
the most consistent run is depicted in Fig. 4-b. It is important
to note that in the case of unconstrained IVA, only 26 out of
the 60 estimated components are selected as meaningful after
inspecting their spatial maps and power spectra values, hence
its power ratio results are omitted in Fig. 4-b. In addition, for
the sake of a clearer comparison of the constrained algorithms,
three outliers from pt-cIVA (with power ratio values of 22.59,
26.92, and 29.57) were removed. For the other algorithms, the
53 estimated components related to the reference signals are
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taken into account for their assessment. As we can observe, the
proposed algorithm tf-cIVA achieves the highest median power
ratio value (red line within each boxplot) followed by ar-
cIVA. Since high power ratio values are associated with higher
BOLD activity, the higher values obtained by tf-cIVA indicate
better performance in the estimation of the components.

For a more detailed analysis of the algorithms, we also
evaluate the correlations between components’ time courses,
i.e., the functional network connectivity (FNC) maps. The
patterns revealed in FNC are consistent with known functional
network relationships, for example, we note the anticorrelation
between the DMN components and sensory-related networks
(e.g., MOT and VIS) and the positive correlation within each
functional domain [43]. The aggregated FNC matrices for HC
subjects and the most consistent run for the three constrained
algorithms with the highest median power ratio are shown
in the lower diagonal of Fig. 5. The FNC obtained by the
proposed algorithm tf-cIVA shows higher contrast than the
rest of the algorithms. In particular, we can see a positive
correlation between functional domains such as sensorimotor
and visual, and a negative correlation between DMN and
sensory-related networks. On the other hand, the FNC matrices
obtained by the other algorithms do not show such a clear
pattern, where the correlation value is, for most of the RSNs,
closer to zero. The upper diagonal of Fig. 5 presents the
difference mean FNC between the two groups (HC - SZ). We
can appreciate that tf-cIVA shows stronger differences between
the two groups than the other algorithms, where HCs show
higher connectivity than SZ within MOT and VIS, consistent
with recent studies [44], [45]. In addition, we also conduct
a statistical analysis to compare the performance of the al-
gorithms. For this purpose, a paired t-test of the HCs FNCs
matrices is performed, and the results obtained by tf-cIVA are
compared with those obtained by the fixed-threshold algorithm
with the highest power ratio, cIVA (ρ = 0.3), and with the
two other adaptive algorithms, i.e., pt-cIVA and ar-cIVA. The
resulting T-value maps are shown in Fig. 6, where the upper
diagonal presents the networks with significant connectivity
differences between the compared algorithms after the false
discovery rate (FDR) correction of the p-values (< 0.05) [46].
As previously mentioned, we expect the FNC to present high
and positive correlation within each functional domain (the
diagonal block). In this regard, it can be seen that tf-cIVA
exhibits higher connectivity values within functional domains
such as VIS, MOT, DMN, CC, or CB. It should be noted that,
as illustrated in Fig. 6-c, ar-cIVA achieves comparable FNCs
to tf-cIVA. Nonetheless, higher connectivity values are still
observable in the diagonal block. Hence, the obtained FNCs
and T-maps suggest that tf-cIVA provides a better model match
to fMRI data and therefore more interpretable results [47].

We further analyze the group differences in FNCs between
HC and SZ by applying a two-sample t-test to the results
obtained by the algorithms. After FDR correction of the p-
values, tf-cIVA is the only algorithm showing more than one
significant connectivity difference between groups, i.e., cIVA
(ρ = 0.5) and ar-cIVA do not show any significant difference,
while cIVA (ρ = 0.3) and pt-cIVA show significant differences
only between two RSNs. Fig. 7 demonstrates the mean FNC of

the networks that have a significant difference between groups
after FDR correction of the p-values. The results show that SZ
patients present weaker connectivity than HC within MOT and
VIS domains. Also, the SZ group shows lower connectivity
between domains such as MOT and AUD, and MOT and VIS.
Some additional group differences can be observed between
CB and MOT and VIS, and also between SC and MOT and
VIS RSNs, consistent with recent studies [40], [44], [45].
These group differences observed in tf-cIVA results increase
our confidence that the proposed algorithm results in a better
model match and performance in preserving subject variability.

VIII. DISCUSSION

We proposed two novel approaches for constrained IVA
that alleviate the need for pre-specified thresholds, thus sig-
nificantly increasing their utility for fMRI data analysis. We
demonstrated that these methods yield fully interpretable net-
work estimates and can effectively capture HOS, even though
they are implemented with a multivariate Gaussian model. The
multivariate Gaussian implementation along with the use of an
effective constraint framework hence enables achieving a de-
sirable balance between performance and computational com-
plexity. An additional advantage of the constrained approach
is that the permutation ambiguity of ICA/IVA is alleviated
and post-analysis and sorting of components becomes a much
easier task.

While we have demonstrated here an application to a dataset
with 98 subjects, significantly higher than what has been
used with IVA approaches that take HOS into account, and
higher than results with IVA-G, the method is scalable to the
analysis of thousands of subjects. Hence, the proposed meth-
ods enable large-scale analyses, including the identification of
homogeneous subgroups, studies of large-scale dynamics, and
replicability. The new methods are also applicable to other
joint BSS applications such as those in remote sensing and
video analysis.
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Fig. 4: Comparison of different IVA algorithms for real fMRI data with N = 60, K = 98, and V = 58515. Plot (a) shows
the cross-joint-ISI values for 50 independent runs for each algorithm. Plot (b) shows the power ratio for the most consistent
run of the constrained algorithms. Note that in the case of pt-cIVA three outliers (with values of 22.59, 26.92, and 29.57)
were removed for a clearer comparison. Plot (c) shows the average spatial maps across the K = 98 subjects of three different
RSNs: AUD, DMN, VIS (top to bottom). The coordinates (mm) of the peak activity are shown at the top of each spatial map.
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Fig. 5: Aggregated FNCs for HCs (lower diagonal) and mean difference FNCs (HC − SZ, upper diagonal) for the most
consistent run. Pairwise Pearson correlation between RSNs time courses are first Fisher z-transformed and averaged across
all HC/SZ subjects, then inverse z-transformed. The upper diagonal shows the difference between the mean FNC of HC and
SZ, where red areas indicate higher connectivity in HC compared with SZ, and blue areas indicate lower connectivity in HC
compared with SZ. The 53 components associated with the reference signals are considered for the analysis of the FNC matrix.
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(a) T-values cIVA (ρ = 0.3)
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(b) T-values pt-cIVA
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(c) T-values ar-IVA

Fig. 6: T-value maps showing the differences in the FNCs for HCs obtained by paired t-tests for tf-cIVA vs. cIVA (ρ = 0.3),
tf-cIVA vs. pt-cIVA, and tf-cIVA vs. ar-cIVA. The lower diagonal of the maps shows the T-values before the FDR correction,
while the upper diagonal shows the T-values after passing the FDR correction (p-value < 0.05). Positive T-values indicate
tf-cIVA shows a higher connectivity value than the compared algorithm. The 53 components associated with the references
are considered for the paired t-test.

(a) Average FNC HC (b) Average FNC SZ

Fig. 7: Average FNC strength obtained by tf-cIVA across subjects for HC and SZ groups. A two-sample t-test is applied and
only the RSNs with significant differences between groups after FDR correction are shown. For each RSN, the averaged values
in SZ and HC groups are presented by the connecting lines. The outer circle depicts the ICs indices and their corresponding
average spatial maps. The 53 components associated with the reference signals are considered for the two-sample t-test.
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