
IEEE TRANSACTIONS ON SIGNAL PROCESSING, DECEMBER 2022 1

Supplementary Material
On Local Linear Convergence Rate of Iterative

Hard Thresholding for Matrix Completion
Trung Vu, Graduate Student Member, IEEE, Evgenia Chunikhina, and Raviv Raich, Senior Member, IEEE

I. COMPARISON TO PRIOR RESULTS

In our main theorem, the rate of convergence depends on

H = S⊤
Ω̄(PV⊥ ⊗ PU⊥)SΩ̄ ∈ R(n1n2−s)×(n1n2−s),

where SΩ̄ ∈ Rn1n2×(n1n2−s) is the selection matrix corre-
sponding to the complement set Ω̄. PU⊥ and PV⊥ are the
projections onto the left and right null spaces of M . Viewing
H as a function of M and Ω, let us consider the set

S = {(X,Ω) | H(X,Ω) is full rank}.

In the following, we show that our proposed set S contains
the set of incoherent matrices and uniform sampling
patterns. In other words, if M is incoherent and Ω is a
uniform sampling, then (M ,Ω) ∈ S w.h.p. First, we highlight
the fact that the invertibility of H is related to the injectivity
of the sampling operator restricted to TM (M≤r) - the tangent
space T to M≤r = {X ∈ Rn1×n2 | rank(X) ≤ r} at
M . In particular, recall that this operator is of the form
AΩT = PΩPT , where PΩ : Rm×n → Rm×n is the orthogonal
projector onto the indices in Ω and PT : Rm×n → Rm×n is
the orthogonal projection onto T (see [1]-Eqn. 3.5)

PT (X) = PUX +XPV − PUXPV = X − PU⊥XPV⊥ ,

for all X ∈ Rm×n. Using vectorization, one can show that
vec(PΩ(X)) = SΩS

⊤
Ω vec(X) = (In1n2 − SΩ̄S

⊤
Ω̄
) vec(X)

and vec(PT (X)) = (In1n2
− PV⊥ ⊗ PU⊥) vec(X) =

Q⊥Q
⊤
⊥vec(X), where Q⊥ ∈ Rn1n2×r(n1+n2−r) is the basis

of TM (M≤r), i.e., Q⊥Q
⊤
⊥= In1n2

−PV⊥ ⊗PU⊥ . Therefore,
the eigenvalues of the operator A∗

ΩTAΩT = PTPΩPT :
Rn1n2 → Rn1n2 restricted to TM (M≤r) are the same as those
of the r(n1 + n2 − r)× r(n1 + n2 − r) matrix

Ĥ = Q⊤
⊥(In1n2 − SΩ̄S

⊤
Ω̄)Q⊥

= Ir(n1+n2−r) −Q⊤
⊥SΩ̄S

⊤
Ω̄Q⊥.

Now representing H = S⊤
Ω̄
(Ir(n1+n2−r) − Q⊥Q

⊤
⊥)SΩ̄ =

In1n2−s−S⊤
Ω̄
Q⊥Q

⊤
⊥SΩ̄, it can be showed that H and Ĥ share

the same set of eigenvalues except those at 1. Equivalently,
the injectivity of AΩT restricted to TM (M≤r) implies the
invertibility of H . Second, we recall the so-called result from

Trung Vu and Raviv Raich are with the School of Electrical Engineering
and Computer Science, Oregon State University, Corvallis, OR 97331, USA.
(e-mails: vutru@oregonstate.edu and raich@oregonstate.edu).

Evgenia Chunikhina is with Department of Mathematics and Com-
puter Science, Pacific University, Forest Grove, OR 97116, USA. (e-
mails:chunikhina@pacificu.edu).

Candes and Recht that the operator AΩT is most likely injective
when restricted to TM (M≤r). Specifically, Eqn. (4.11) in
[1] states that if Ω is sampled according to the Bernoulli
model with probability p ≈ s/n1n2 and the solution M is
a rank-r matrix satisfying µ-coherent property, then for all
Y ∈ Rn1×n2 :

(1− τ)p ∥PT (Y )∥F ≤∥(PTPΩPT )(Y )∥F
≤ (1 + τ)p ∥PT (Y )∥F , w.h.p.,

where τ is an arbitrarily small constant such that
CR

√
µnr logn

s ≤ τ < 1, 1 for n = max(n1, n2). Finally,
translating this into our context, we can show that under
the same assumptions (uniform sampling and incoherence
property) and w.h.p., the matrix H is full rank with the
property

∥Hx∥ ≥ (1− τ)p ∥x∥ , ∀x ∈ Rn1n2−s.

This implies λmin(H) ≥ (1−τ)p > 0. We conclude that if M
is incoherence and Ω is a uniform sampling, then (X,Ω) ∈ S
w.h.p. Beyond these traditional assumptions, the definition of
S allows us to identify other cases that can guarantee linear
convergence (e.g., in deterministic settings of Ω and various
structures of X that does not satisfy incoherence property).

II. CONVERGENCE OF IHT WITH THE OPTIMAL STEP SIZE
FOR LARGE-SCALE MATRIX COMPLETION

It is noteworthy that the exact expression of the con-
vergence rate provides more insights into the asymptotic
behavior of PGD that can be independent of the local
structure of the problem. As it is studied in Section IV
of the original manuscript, our result extends outside the
fixed (low) rank regime considered in existing works and
offer a way to evaluate the behavior of IHTSVD under
more challenging conditions. In particular, when U and V
are selected at random (e.g., from the Haar ensemble) with
r ∼ O(min{n1, n2}) and s ∼ O(n1n2), we show that the
convergence rate approaches a limit which is independent
of the actual matrix X and only depends on its dimen-
sions (n1, n2), its rank r, and the sampling rate s: ρ∞η →
max{|1 − η

(√
(1− ρr)2ρs +

√
ρr(2− ρr)(1− ρs)

)2|, |1 −

1In [1], CR is some absolute constant that is independent of the problem
parameters and the authors pick τ = 1/2.
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(a) ρ∞ (b) ρ∞ - zoomed-in

(c) ρ∞opt (d) ρ∞opt - zoomed-in

Fig. 1: Contour plots of ρ∞1 and ρ∞opt as 2-D functions of ρr and ρs given by (1) and (2), respectively. (a) and (c): the entire
feasible range ρr ∈ (0, 1] and ρs ∈ (0, 1]; (b) and (d): zoomed-in version of (a) and (c) near the bottom-left corner, respectively.
The isoline at which ρ∞1 = ρ∞opt = 1 is represented by the dashed line, corresponding to the case ρs = 1−(1−ρr)

2. The yellow
region below this isoline corresponds to the under-determined setting ρs < 1− (1− ρr)

2. The common setting considered in
the literature (e.g., [2]–[4] is the zoomed-in region where ρr ≪ ρs ≪ 1. On the other hand, our local convergence analysis
covers the entire region in which the rank ratio and the sampling rate are not necessarily small.

η
(√

(1− ρr)2ρs −
√
ρr(2− ρr)(1− ρs)

)2|}. When η = 1,
we have

ρ∞1 = 1−
(√

(1− ρr)2ρs −
√
ρr(2− ρr)(1− ρs)

)2

. (1)

In addition, the optimal step size selected using this strategy
and the corresponding optimal rate are given by

η∞opt =
1

(1− ρr)2ρs + ρr(2− ρr)(1− ρs)
,

ρ∞opt =
2
√

(1− ρr)2ρsρr(2− ρr)(1− ρs)

(1− ρr)2ρs + ρr(2− ρr)(1− ρs)
. (2)

Figure 1 demonstrates the rate of convergence in various
setting of ρr and ρs. Note that if we evaluate this step-
size choice under the regime suggested in [2], [3], i.e.,
limmin{n1,n2}→∞ ρs = 0 and limm→∞ ρr/ρ

2
s = 0, then

ηopt =
1

ρs

(
1 + o(ρs)

)
, ρopt = 2

√
2ρr
ρs

(
1 + o(ρs)

)
. (3)

Comparing this with the step size 1/ρs selected in [3], [4], this
provides the insight that the step size used in the approach

of [3] not only guarantees linear convergence but also is
optimal and cannot be improved upon. Notwithstanding, our
local convergence analysis offers more precise estimate of the
convergence rate compared to the 0.5 upper bound in prior
works. In particular, in the aforementioned regime (ρr ≪ ρs),
our estimate of the rate ρopt approaches 0, which is much
faster than the upper bound 0.5 (see Fig. 2).

III. DETAILS OF EXAMPLE 1

A. The first case

Using the same argument as in Lemma 5.3 in [5], we can
replace the complex matrix in (22) by a real PSD matrix and
prove the following lemma:

Lemma 1. Let a = [a1, . . . , aqn]
⊤ is a random vector with

i.i.d entries, where ai ∼ N (0, 1/n). Then for any sequence of
qn× qn PSD matrices Mqn with uniformly bounded spectral
norms ∥Mqn∥2, we have(

a⊤Mqna− 1

n
tr(Mqn)

) p→ 0 as n → ∞.
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Fig. 2: Convergence of IHT with step size η = n1n2/s
under the setting ρs = .2 and ρr = 0.0001. With the matrix
dimension being 10000, the difference between η = n1n2/s
and the optimal step size ηopt given in (2) is as small as 0.003.
The blue solid line represents the error through IHT iterations.
The red and yellow dashed lines represent the exponential
decrease at rates ρ∞opt = 0.056 given in (2) and 0.5 given
in [4], respectively. Our estimate of the rate is tighter than the
0.5 global upper-bound in this asymptotic regime.

Proof. To simplify our notation, let us denote the (i, j)-th
entry of Mqn by Mij and δij is the indicator of the event
i = j. We follow a similar derivation as in [6]. Since ai are
i.i.d normally distributed, we have

E[ai] = 0, E[aiaj ] = δij
1

n
,

E[aiajakal] = (δijδkl + δikδjl + δilδjk)
1

n2
, (4)

for any indices 1 ≤ i, j, k, l ≤ n. In order to prove(
a⊤Mqna− 1

n tr(Mqn)
) p→ 0, it is sufficient to show that{

E[a⊤Mqna] =
1
n tr(Mqn),

Var(a⊤Mqna) → 0 as n → ∞.

First, by the linearity of expectation, we have

E[a⊤Mqna] = E
[∑

i,j

Mijaiaj

]
=

∑
i,j

MijE[aiaj ]

=
∑
i,j

Mijδij
1

n
=

1

n

qn∑
i=1

Mii =
1

n
tr(Mqn). (5)

Second, by rewriting the variance of the summation∑
i,j Mijaiaj in terms of the sum of covariances, we obtain

Var(a⊤Mqna) = Var
(∑

i,j

Mijaiaj

)
=

∑
i,j,k,l

Cov(Mijaiaj ,Mklakal). (6)

Using the formula

Cov(X,Y ) = E[XY ]− E[X]E[Y ], (7)

and the linearity of expectation, (6) can be represented as

Var(a⊤Mqna)

=
∑
i,j,k,l

MijMkl

(
E[aiajakal]− E[aiaj ]E[akal]

)
=

∑
i,j,k,l

MijMkl

(
δikδjl + δilδjk

) 1

n2

=
2

n2

∑
i,j

M2
ij =

2

n2
∥Mqn∥2F . (8)

Since Mqn is PSD and has bounded spectral norm, all of its
eigenvalues are bounded by 0 ≤ λi(Mqn) ≤ C, for some
constant C, and hence,

∥Mqn∥2F =

qn∑
i=1

λ2
i (Mqn) ≤ qnC2.

Thus, substituting back into (8) yields

Var(a⊤Mqna) ≤
2

n2
qnC2 → 0 as n → ∞.

This completes our proof of the lemma.

B. The second case
Similarly, we consider the following lemma:

Lemma 2. Let b = [b1, . . . , bqn] and c = [c1, . . . , cqn] are
random vectors with i.i.d entries, where bi, cj ∼ N (0, 1/n).
Denote m = n2, k = q2 and a = b⊗c. Then for any sequence
of km × km PSD matrices Mkm with uniformly bounded
spectral norms ∥Mkm∥2, we have(

a⊤Mkma− 1

m
tr(Mkm)

) p→ 0 as n → ∞.

Proof. Denote M[ij] is the (i, j)-th qn × qn block of Mkm.
Then it is straightforward to verify that

a⊤Mkma =
∑
i,j

bi(c
⊤M[ij]c)bj .

In order to prove
(
a⊤Mkma − 1

m tr(Mkm)
) p→ 0, it is

sufficient to show that{
E[a⊤Mkma] = 1

m tr(Mkm),

Var(a⊤Mkma) → 0 as n → ∞.

First, we use the linearity of expectation to
obtain E[a⊤Mkma] = E

[∑
i,j bi(c

⊤M[ij]c)bj

]
=∑

i,j E[bibj ]E[c⊤M[ij]c]. From (5) and Lemma 1,
the last equation is equivalent to E[a⊤Mkma] =∑

i,j δij
1
n · 1

n tr(M[ij]) =
1
m tr(Mkm). Second, we have

Var(a⊤Mkma) = Var
(∑

i,j

bi(c
⊤M[ij]c)bj

)
=

∑
i,j,k,l

Cov
(
bi(c

⊤M[ij]c)bj , bk(c
⊤M[kl]c)bl

)
. (9)

From (7), each covariance on the RHS of (9) can be repre-
sented as

Cov
(
bi(c

⊤M[ij]c)bj , bk(c
⊤M[kl]c)bl

)
= E[bibjbkbl] · E[c⊤M[ij]c · c⊤M[kl]c]

− E[bibj ] · E[bkbl] · E[c⊤M[ij]c] · E[c⊤M[kl]c]. (10)
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(a) n1 = 500, n2 = 400
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(b) n1 = 1200, n2 = 1000

Fig. 3: The coefficient of variation (on a log10 scale) of the empirical rate shown in Fig. 5-(a) and (b), respectively. In each
plot, the black dashed line corresponds to the boundary line 1−ρs = (1−ρr)

2 and the black region on the bottom-right corner
corresponds to the settings where no linear convergence is observed (i.e., the empirical rate is set to 1). The darker color in
the right plot demonstrates the increasing concentration of the empirical rate as a random variable when the dimensions grow
larger. It is also interesting to note that the variability in relation to the mean decreases as it approaches the boundary line
(i.e., from the top-left corner to the bottom-right corner).

Lemma 3. Let P and Q be matrices in Rqn×qn. Then

E[c⊤Pc · c⊤Qc] =
tr(P ) tr(Q) + tr(PQ⊤) + tr(PQ)

n2
.

The proof of Lemma 3 is straightforward from (4). From
Lemma 3 and (4), we can simplify (10) as

Cov
(
bi(c

⊤M[ij]c)bj , bk(c
⊤M[kl]c)bl

)
=

1

n4

(
tr(M[ij]M[kl]) + tr(M[ij]M

⊤
[kl])

+ tr2(M[ij]) + tr(M2
[ij]) + tr(M[ij]M

⊤
[ij])

+ tr(M[ij]) tr(M
⊤
[ij]) + tr(M2

[ij])
)
.

Substituting the last equation back into (9) yields

Var(a⊤Mkma) =
2

n4

(∑
i,j

tr2(M[ij]) +
∑
i,j

tr(M[ii]M[jj])

+
∑
i,j

tr(M⊤
[ij]M[jj]) +

∑
i,j

tr(M2
[ij])

)
. (11)

Next, we bound each term on the RHS of (11). To that end,
we utilize the following lemma:

Lemma 4. For any matrices A,B ∈ Rn×n, it holds that
1) ∥A∥F ≤

√
n ∥A∥2,

2) tr2(A) ≤ n ∥A∥2F ,
3) tr(A⊤B) ≤ ∥A∥F ∥B∥F ≤ n ∥A∥2 ∥B∥2,
4) tr(A2) ≤ ∥A∥2F = tr(A⊤A).

The proof of Lemma 4 can be found in [7] - Chapter 5.
Applying Lemma 4 with the blocks of size qn×qn, we obtain∑

i,j

tr2(M[ij]) ≤
∑
i,j

qn
∥∥M[ij]

∥∥2
F
= qn ∥M∥2F

≤ (qn)3 ∥M∥2 ≤ C(qn)3,

∑
i,j

tr(M[ii]M[jj]) ≤
∑
i,j

qn
∥∥M[ii]

∥∥
2

∥∥M[jj]

∥∥
2

≤
∑
i,j

qn ∥M∥2 ∥M∥2 = C2(qn)3,

∑
i,j

tr(M⊤
[ij]M[jj]) =

∑
i,j

∥∥M[ij]

∥∥2
F
= ∥M∥2F ≤ C(qn)2,

∑
i,j

tr(M2
[ij]) ≤

∑
i,j

∥∥M[ij]

∥∥2
F
= ∥M∥2F ≤ C(qn)2.

Therefore, (11) can be bounded as

Var(a⊤Mkma) ≤ 2

n4
(C(qn)3 + C2(qn)3 + 2C(qn)2).

The conclusion of the lemma follows by the fact that the RHS
of the last equation which approaches 0 as n → ∞.
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