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Abstract—Many recent problems in signal processing and
machine learning such as compressed sensing, image restoration,
matrix/tensor recovery, and non-negative matrix factorization
can be cast as constrained optimization. Projected gradient de-
scent is a simple yet efficient method for solving such constrained
optimization problems. Local convergence analysis furthers our
understanding of its asymptotic behavior near the solution, offer-
ing sharper bounds on the convergence rate compared to global
convergence analysis. However, local guarantees often appear
scattered in problem-specific areas of machine learning and signal
processing. This manuscript presents a unified framework for
the local convergence analysis of projected gradient descent in
the context of constrained least squares. The proposed analysis
offers insights into pivotal local convergence properties such as
the conditions for linear convergence, the region of convergence,
the exact asymptotic rate of convergence, and the bound on the
number of iterations needed to reach a certain level of accuracy.
To demonstrate the applicability of the proposed approach, we
present a recipe for the convergence analysis of projected gradient
descent and demonstrate it via a beginning-to-end application of
the recipe on four fundamental problems, namely, linear equality-
constrained least squares, sparse recovery, least squares with the
unit norm constraint, and matrix completion.

Index Terms—Projected gradient descent, constrained least
squares, local linear convergence, asymptotic convergence rate.

I. INTRODUCTION

CONSTRAINED least squares can be formulated as the
following optimization problem:

min
x∈Rn

1

2
‖Ax− b‖2 s.t. x ∈ C, (1)

where C ⊆ Rn is a non-empty closed set, A ∈ Rm×n, and
b ∈ Rm is the observation from which we wish to recover the
solution x∗ efficiently. With the surge in the amount of data
over the past decades, modern learning problems have become
increasingly complex and optimization in the presence of con-
straints is frequently used to capture accurately their inherent
structure. Examples in the area of machine learning and signal
processing include, but are not limited to, compressed sensing
[1]–[3], image restoration [4]–[6], seismic inversion [7]–[9],
and phase-only beamforming [10], [11]. Since the set of real
n1 × n2 matrices is isomorphic to Rn1n2 , application of (1)
is also found in problems such as low-rank matrix recovery
[12]–[14] and non-negative matrix factorization [15]–[17].
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Projected gradient descent (PGD) is one of the most popular
methods for solving constrained optimization, thanks to its
simplicity and efficiency. In theory, convergence properties of
this method are natural extensions of the classical results for
unconstrained optimization [18]–[21]. When the constraint set
C is convex, PGD is also known as the projected Landwe-
ber iteration [22] and is shown to converge sublinearly to
the global solution of (1). Moreover, when the least-squares
objective is strongly convex, the algorithm enjoys fast linear
convergence. For non-convex settings, with the recent intro-
duction of restricted (strong) convexity, global convergence
has been guaranteed for certain structural constraints such
as sparsity constraint [23], low-rank constraint [24], and L2-
norm constraint [25]. For a more comprehensive review of
convergence analysis for PGD in the literature, we refer the
reader to Section I of the Supplementary Material.

From a different perspective, problem (1) can be viewed
as a manifold optimization problem in which the intrinsic
structure of manifolds can be exploited. Dating back to the
1970s, Luenberger [26] studied a variant of gradient projection
method using the concept of geodesic descent. Under the
assumption that C is a differentiable manifold in Euclidean
space, the author provided sufficient conditions for global
convergence and established a sharp bound on the asymptotic
convergence rate near a strict local minimum. Later on, this
result was extended to a broader class of Riemannian mani-
folds and has been widely known as the Riemannian steepest
descent method [26]–[29]. The asymptotic convergence rate
of Riemannian steepest descent (with exact line search) is
given by the Kantorovich ratio (β − α)2/(β + α)2, where
α and β are the smallest and largest eigenvalues of the
second derivative of the Lagrangian restricted to the subspace
tangent to the constraint manifold at the solution. Remarkably,
such local convergence bounds are tighter than those obtained
from the aforementioned global convergence analysis in the
optimization literature since the former exploits the local
structure of the problem. The global convergence bounds, on
the other hand, take into account the worst-case behavior of the
algorithm that might occur far away from the solution of inter-
est. In certain situations, global convergence analysis suggests
sublinear convergence while local convergence analysis offers
linear convergence thanks to the benign structure near the
solution [30]. One key element in the asymptotic convergence
analysis of Riemannian steepest descent is Kantorovich in-
equality [31]. However, this technique depends on the optimal
choice of step size in the exact line search scheme and is
not straightforwardly generalized to other variants of gradient
projection. To the best of our knowledge, there has been
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no direct extension of the analysis for Riemannian steepest
descent method to plain PGD with a fixed step size.

Our Contribution. In this paper, we develop a unified
framework for a local convergence analysis of the PGD
algorithm. We leverage our earlier preliminary work, in which
we developed a convergence rate only analysis for the specific
problems of low-rank matrix completion [32] and minimiza-
tion of a quadratic with spherical constraints [33]. For the
former, we developed two acceleration approaches that lever-
age on the rate analysis [34], [35]. The key approach used
in these works is to represent each algorithm as a fixed point
iteration and to approximate the fixed point operator as locally
linear. This idea extends to other algorithms (i.e., non PGD)
that can be represented using a fixed point iteration (e.g., see
our work on analyzing GD for symmetric matrix completion
[36]). For each problem, problem-specific properties have
been utilized to facilitate the analysis. Here, our goal is to
develop a unified framework for convergence rate analysis of
PGD for constrained least-squares. Our framework relies on
three key steps: (i) the introduction of Lipschitz-continuous
differentiability to provide tight error bounds on the linear
approximation of the projection operator near the solution,
(ii) the establishment of an asymptotically-linear recursion on
the error iterations, and (iii) the derivation of the linear rate
and the region of convergence (ROC) of the error sequence
by leveraging our work on the convergence of nonlinear
difference equations [37]. Our approach shifts the burden of
the analysis to the characterization of the projection operator
(for an example of such characterization of the projection onto
the rank-r manifold, see [38]-Theorem 1). In the context of
PGD for the general constrained least squares, the proposed
framework is the first to offer a closed-form expression of
the exact asymptotic rate of local linear convergence, the
ROC, and a bound on the number of iterations needed to
reach a certain level of accuracy.1 To illustrate the utility of
the approach, we apply our framework to four well-known
problems in machine learning and signal processing, namely,
linear equality-constrained least squares, sparse recovery, least
squares with spherical constraint, and matrix completion. We
show that the obtained asymptotic rate of convergence matches
existing results in the literature. For problems in which the
exact convergence rate of PGD has not been studied, we verify
the asymptotic rate obtained by our analysis against the rate
of convergence obtained in numerical experiments. We believe
that this framework can be used as a general recipe to develop
quick yet sharp local convergence results for PGD in other
applications in the field as well as to complement conservative
analysis of global convergence.

Organization. The rest of this paper is organized as follows.
Section II provides a brief background of PGD for constrained
least squares, including properties of the orthogonal projection,
stationary points of the problem, and the PGD algorithm
along with its fixed points. Next, we present our unified

1We note that the classic work of Polyak [39] can be considered as a
replacement for our analysis in the third step. While such result is more
general in the context of nonlinear different equations, we do not find a
straightforward extension to obtain the ROC and the guarantees on the number
of required iterations in our context of convergence analysis.

framework for the local convergence analysis of PGD in
Section III, followed by the proof of the main theorem. Then,
Section IV demonstrates the application of the proposed recipe
to four well-known problems in machine learning and signal
processing. Finally, we summarize our results and discuss
some of the possible extensions in Section V.

II. PRELIMINARIES

This section presents key concepts and background results
that will be used as the basic premise of our subsequent
convergence analysis.

A. Notation

Throughout the paper, we use the notation ‖·‖ to denote
the Euclidean norm for vectors. For matrices, ‖·‖F and ‖·‖2
denote the Frobenius norm and the spectral norm, respectively.
Boldfaced symbols are reserved for vectors and matrices.
Additionally, the t × t identity matrix is denoted by It and
the ith vector in the natural basis of Rn is denoted by
ei. We use ⊗ to denote the Kronecker product between
two matrices. The vectorization of a matrix X ∈ Rm×n,
denoted by vec(X), is the concatenation of the columns of
a matrix one on top of another in their original order, i.e., for
X = [x1, . . . ,xn], vec(X) = [x>1 , . . . ,x

>
n]>. Given a vector

x ∈ Rn, diag(x) denotes the a square diagonal matrix such
that [diag(x)]ii = xi. For a scalar r > 0, denote the open ball
of center x and radius r by B(x, r) = {y | ‖y − x‖ < r}.
Correspondingly, the closed ball of center x and radius r is
denoted by B[x, r] = {y | ‖y−x‖ ≤ r}. The lexicographical
order between two vectors x and y of the same length is
defined by x < y if xi < yi for the first i (i goes from
1) where xi and yi differ. The lexicographical order between
two matrices X and Y of the same size is define by the
lexicographical order between vec(X) and vec(Y ).

Given A ∈ Rm×n, the ith largest eigenvalue and the ith
largest singular value of A are denoted by λi(A) and σi(A),
respectively. The spectral radius of A is defined as ρ(A) =
maxi|λi(A)| and is less than or equal to the spectral norm,
i.e., ρ(A) ≤ ‖A‖2. Gelfand’s formula [40] states that ρ(A) =

limk→∞‖Ak‖1/k2 . If A is square and invertible, the condition
number of A is defined as κ(A) = σ1(A)/σn(A).

B. Nonlinear Orthogonal Projections

Given a non-empty set C ⊆ Rn, let us define the distance
from a point x ∈ Rn to C as

d(x, C) = inf
y∈C
{‖y − x‖}. (2)

The set of all projections of x onto C is defined by

ΠC(x) = {y ∈ C | ‖y − x‖ = d(x, C)}. (3)

It is well-known [41] that if C is closed, then for any x ∈
Rn, ΠC(x) is non-empty2. An orthogonal projection onto C
is defined as PC : Rn → C such that PC(x) is chosen as an
element of ΠC(x) based on a prescribed scheme (e.g., based

2In addition, if C is convex, then ΠC(x) is singleton.
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on lexicographic order). There exists a non-empty subset of
Rn such that ΠC is uniquely defined, given by

singleton ΠC = {x ∈ Rn | ΠC(x) is singleton}. (4)

We can now consider the differentiability of PC over
singleton ΠC as follows.

Definition 1 (Point-wise differentiability). The projection PC
is said to be differentiable at x ∈ singleton ΠC if there exists
∇PC(x) ∈ Rn×n such that

lim sup
δ→0

sup
y∈ΠC(x+δ)

‖y − PC(x)−∇PC(x)δ‖
‖δ‖

= 0.

The operator ∇PC(x) is said to be the derivative of PC at x.

Definition 2 (Point-wise Lipschitz-continuous differentiabil-
ity). The projection PC is said to be Lipschitz-continuously
differentiable at x ∈ singleton ΠC if PC is differentiable at x
and there exist 0 < c1(x) ≤ ∞ and 0 ≤ c2(x) < ∞ such
that for any δ ∈ B(0, c1(x)), we have

sup
y∈ΠC(x+δ)

‖y − PC(x)−∇PC(x)δ‖ ≤ c2(x)‖δ‖2. (5)

It is noted that the supremum in (5) implies

‖PC(x+ δ)− PC(x)−∇PC(x)δ‖ ≤ c2(x)‖δ‖2

holds for any choice of PC(x + δ) in ΠC(x + δ). Note
that while PC(x) is uniquely defined for x ∈ singleton ΠC ,
PC(x+ δ) is not since x+ δ may not be in singleton ΠC .

Example 1. Let C = {x ∈ Rn | ‖x‖ = 1} be the unit sphere
of dimension n − 1. For any x 6= 0, the projection onto C
is uniquely given by PC(x) = x/‖x‖. For x = 0, we have
ΠC(0) = C and PC(0) can be chosen as any point on the
unit sphere. In Section II of the Supplementary Material, we
prove that PC is Lipschitz-continuously differentiable at any
x ∈ singleton ΠC = Rn \ {0}. In particular, for any x 6= 0
and δ ∈ Rn, we have

sup
y∈ΠC(x+δ)

∥∥∥∥y − x

‖x‖
−
(
In −

xx>

‖x‖2
) δ

‖x‖

∥∥∥∥ ≤ 2

‖x‖2
‖δ‖2.

(6)

For δ 6= −x, ΠC(x + δ) = {(x + δ)/ ‖x+ δ‖} is sin-
gleton and the supremum is evaluated at only one point
y = (x+δ)/ ‖x+ δ‖. For δ = −x, ΠC(x+δ) = ΠC(0) = C
is not singleton and the supremum is taken over the entire
sphere independent of x. In either case regardless the value
of δ, comparing (6) with (5), we recognize the projection
onto the unit sphere is Lipschitz-continuously differentiable at
x ∈ singleton ΠC with

∇PC(x) =
1

‖x‖

(
In −

xx>

‖x‖2
)
,

c1(x) =∞, c2(x) =
2

‖x‖2
.

In 1984, Foote [42] showed that if C is a Ck (k ≥ 2)
submanifold of Rn, then C has a neighborhood E such that
E ⊆ singleton ΠC and the projection PC restricted to E is
a Ck−1 mapping. Later on, Dudek and Holly [43] proved

Algorithm 1 Projected Gradient Descent (PGD)

Input: A, b, C, η, x(0)

Output: {x(k)}∞k=0

1: for k = 0, 1, . . . do
2: z

(k)
η = x(k) − ηA>

(
Ax(k) − b

)
3: x(k+1) = PC

(
z

(k)
η

)
the derivative ∇PC is a linear map to the tangent bundle of
C and more importantly, for any x∗ ∈ C, ∇PC(x∗) is the
(linear) orthogonal projection onto the tangent space to C at
x∗. Recently, a local version of this result has been proposed
by Lewis and Malick [44]:

Proposition 1. (Rephrased from Lemma 4 in [44]) Assume
C is a Ck (k ≥ 2) manifold around a point x∗ ∈ C. Denote
the tangent space to C at x∗ by Tx∗(C). Then, the set of
projections ΠC is (locally) singleton around x∗. Moreover, PC
is a Ck−1 mapping around x∗ and

∇PC(x∗) = PTx∗ (C), (7)

where PTx∗ (C) is the orthogonal projection onto Tx∗(C).

Further works on the uniqueness and regularity of PC can also
be found in [45]–[48]. We note that the assumption C is a C2

manifold around x∗ requires the existence of a neighborhood
of x∗ in which PC is uniformly differentiable. Our result in this
manuscript, while strongly motivated by the aforementioned
results, only requires C to be differentiable at two points (see
Theorem 1).

C. Stationary Points of (1)

We defined the (Lipschitz-continuous) differentiability of
the projection PC at a point in C. We are now in position
to define stationary points of (1) as those where the gradient
of the objective function on the constraint set vanishes [49]:

Definition 3. x∗ ∈ C is a stationary point of (1) if PC is
differentiable at x∗ and

∇PC(x∗)A>
(
Ax∗ − b

)
= 0. (8)

Assume in addition that PC is Lipschitz-continuously differ-
entiable at x∗ with constants c1(x∗) and c2(x∗). Then x∗

is called a Lipschitz stationary point of (1) with constants
c1(x∗) and c2(x∗).

Similar to unconstrained optimization, stationary points in
Definition 3 can be local minimizers, local maximizers, or
saddle points of the constrained problem (1).

D. Projected Gradient Descent

Algorithm 1 describes the projected gradient descent algo-
rithm for solving (1). Starting at some x(0) ∈ C, the algorithm
iteratively updates the current value by (i) taking a step in the
opposite direction of the gradient and (ii) projecting the result
back onto C, i.e.,

x(k+1) = PC
(
x(k) − ηA>

(
Ax(k) − b

))
, (9)
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Fig. 1: Illustration of convergence of projected gradient
descent to a fixed point x∗. In order to guarantee lin-
ear convergence, Theorem 1 requires PC to be Lipschitz-
continuously differentiable at both x(k) and z(k)

η = x(k) −
ηA>(Ax(k) − b). Moreover, the condition ‖x(0) − x∗‖ <
min{c1(x∗)/κ(Q), c1(z∗η)/(κ(Q)uη)} from (13) ensures that
x(k) remains inside B(x∗, c1(x∗)) (blue dashed ellipse) and
z

(k)
η remains inside B(z∗η , c1(z∗η)) (orange dashed ellipse).

where η > 0 is a fixed step size.

Definition 4. x∗ is a fixed point of Algorithm 1 with step size
η > 0 if

x∗ = PC(x∗ − ηA>(Ax∗ − b)). (10)

Lemma 1. If x∗ is a fixed point of Algorithm 1 with some
step size η > 0 and PC is differentiable at x∗, then x∗ is a
stationary point of (1).

The proof of Lemma 1 is given in Appendix A.

III. LOCAL CONVERGENCE ANALYSIS

In this section, we present the key contribution of this work,
namely, a local convergence analysis of projected gradient
descent for constrained least squares. Specifically, our goal is
to establish the following results: (i) a closed-form expression
of the exact asymptotic rate of convergence, (ii) a bound on
the number of iterations needed to reach a certain level of
accuracy, and (iii) a region of convergence. Figure 1 illustrates
the key idea in our analysis. In order to establish the local
linear convergence of Algorithm 1 to its fixed point x∗, we
require the Lipschitz-continuous differentiability of PC at x∗

and at z∗η = x∗ − ηA>(Ax∗ − b). These properties enables
us to approximate each projected gradient descent update by a
linear operator on the error vector (i.e., the difference between
x(k) and x∗). Then, under the additional assumption that this
linear operator is a contraction mapping and the initialization
x(0) is sufficiently close to x∗, we show that the gradient step
and the projection step remain inside the Lipschitz-continuous

differentiability regions of x∗ (i.e., B(x∗, c1(x∗))) and z∗η
(i.e., B(z∗η , c1(z∗η)), respectively).

A. Main Result

In this following, we state our main result in Theorem 1,
followed by further insights into the convergence results.

Theorem 1. Suppose x∗ is a fixed point of Algorithm 1 with
step size η > 0 such that the following conditions hold:
1) PC is Lipschitz-continuously differentiable at both the fixed

point x∗ and at the gradient step taken from the fixed point

z∗η = x∗ − ηA>
(
Ax∗ − b

)
, (11)

with the corresponding matrices ∇PC(x∗), ∇PC(z∗η), and
constants c1(x∗), c2(x∗), c1(z∗η), and c2(z∗η).

2) The matrix

H = ∇PC(z∗η)(In − ηA>A)∇PC(x∗) (12)

admits an eigendecomposition H = QΛQ−1, where
Q ∈ Rn×n is an invertible matrix and Λ is a diagonal
matrix whose diagonal entries are strictly less than 1 in
magnitude, i.e., ρ(H) = ‖Λ‖2 < 1.

3) The initial iterate x(0) satisfies

‖x(0) − x∗‖ < min
{c1(x∗)

κ(Q)
,
c1(z∗η)

κ(Q)uη
,

1− ρ(H)

q

}
,

(13)

where

uη = ‖In − ηA>A‖2 (14)

and

q = κ2(Q)uη
(
c2(z∗η)uη + ‖∇PC(z∗η)‖2c2(x∗)

)
. (15)

Let {x(k)}∞k=0 be the vector sequence generated by the PGD
update in (9). Then, for any 0 < ε < 1, we have ‖x(k)−x∗‖ ≤
ε‖x(0) − x∗‖ for all

k ≥ log(1/ε) + log(κ(Q))

log(1/ρ(H))
+ c3, (16)

where c3 > 0, given explicitly in Lemma 4, is independent of ε.
Algorithm 1 is said to converge locally to x∗ at an asymptotic
linear rate ρ(H) with the region of linear convergence given
by (13).

Theorem 1 states the sufficient conditions for asymptotic linear
convergence of Algorithm 1. In addition, the theorem estab-
lishes the asymptotic rate as the spectral radius of the matrix
H and bounds the number of iterations needed to reach ε-
accuracy. The proof of Theorem 1 is given in Subsection III-B.
It is noteworthy that in the RHS of (16), the first term
corresponds to linear convergence in the asymptotic regime
and the second term corresponds to nonlinear convergence
behavior at the early stage. We will revisit this point when
we introduce Lemma 4.

Remark 1. When H is symmetric, its eigendecomposition
exists and can be represented as

H = QΛQ>,
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where Q is an orthogonal matrix with κ(Q) = 1.

Next, we study a special case of Theorem 1 in which

∇PC(z∗η) = ∇PC(x∗) = PTx∗ (C) = Ux∗U
>
x∗, (17)

where Ux∗ ∈ Rn×d (d ≤ n) is the matrix whose columns
provide an orthonormal basis for the tangent space to C at
x∗. A typical example in which (17) holds is when (i) C is a
C2 d-dimensional submanifold around x∗; and (ii) z∗η = x∗.
The first condition (i) stems from Proposition 1 in order to
guarantee ∇PC(x∗) = PTx∗ (C). The second condition (ii) is
equivalent to A>(Ax − b) = 0, which means x∗ is also a
stationary point of the unconstrained problem. Conveniently,
this coincidence eliminates the task of characterizing the
projection PC and its derivative ∇PC at a point outside C,
which can be a challenging task in many problems.

Corollary 1. Consider the same setting as in Theorem 1 with
the additional assumption that (17) holds. If (AUx∗)

>AUx∗

has full rank and

0 < η <
2

‖AUx∗‖22
, (18)

then Algorithm 1 with fixed step size η converges locally to
x∗ at an asymptotic linear rate

ρ(H) = max{|1− ηλ1|, |1− ηλd|}, (19)

where λ1 and λd are the largest and smallest eigenvalues
of (AUx∗)

>AUx∗ , respectively. The region of linear conver-
gence is given by

‖x(0) − x∗‖ < min
{
c1(x∗),

c1(z∗η)

uη
,

1− ρ(H)

uηc2(x∗) + u2
ηc2(z∗η)

}
,

(20)

where uη is given by (14).

The proof of Corollary 1 is given in Appendix B.

Remark 2. Recall that uη defined in (14) is also the asymp-
totic linear rate of gradient descent for the unconstrained least
squares [50], i.e.,

uη = max{|1− ηλ1(A>A)|, |1− ηλn(A>A)|}.

Since Ux∗ is a semi-orthogonal matrix, the eigenvalues of
U>x∗A

>AUx∗ interlace with those of A>A [51], which in
turns implies λn(A>A) ≤ λd ≤ λ1 ≤ λ1(A>A). Thus, one
can show that for η < 2/‖A‖22,

ρ(H) ≤ uη ≤ 1, (21)

with the equality uη = 1 holding if and only if A>A
is singular. Interestingly, (21) implies the presence of the
constraint in this case helps accelerate the convergence of
gradient descent to x∗.

B. Proof of Theorem 1

This section presents the proof of Theorem 1. Our key
ideas are: (1) using the Lipschitz-continuous differentiability
of PC at x∗ and at z∗η to establish a recursive relation on the
error vector δ(k) = x(k) − x∗, (2) performing a change of

basis δ̃(k) = Q−1δ(k) to establish an asymptotically-linear
quadratic system dynamic that upper-bounds the norm of
the transformed error vector, (3) applying the result on the
convergence of an asymptotically-linear quadratic difference
equation in [37] to obtain the number of iterations required for
‖δ̃(k)‖ ≤ ε̃‖δ̃(0)‖, and (4) converting the convergence result
on the transformed error ‖δ̃(k)‖ to the convergence result
on the original error ‖δ(k)‖. In the following, we provide
the complete proof, with some details deferred to the appendix.

Step 1: Let us define the error vector of Algorithm 1 as δ(k) =
x(k)−x∗, for k ∈ N. Using this definition of the error vector,
we can replace x(k) = x∗ + δ(k) and x(k+1) = x∗ + δ(k+1)

into (9) to obtain an equivalent update on the error vector

δ(k+1) = PC
(
x∗ + δ(k) − ηA>

(
A(x∗ + δ(k))− b

))
− x∗.

(22)

Based on the definition of z∗η in (11) and the fact that x∗ is a
fixed point of the algorithm (see (10)), i.e., x∗ = PC(z∗η), we
can rewrite (22) as

δ(k+1) = PC
(
z∗η + (I − ηA>A)δ(k)

)
− PC(z∗η). (23)

We are now in position to analyze the error update as a fixed-
point iteration: δ(k+1) = f(δ(k)), where f(δ) = PC(z∗η +
(I − ηA>A)δ) − PC(z∗η). The following lemma provides a
recursive equation on the error vector that is in the form of an
asymptotically-linear quadratic system dynamic:

Lemma 2. Recall H = ∇PC(z∗η)(In − ηA>A)∇PC(x∗). If
the error vector at the k-th iteration satisfies

‖δ(k)‖ < min
{
c1(x∗),

c1(z∗η)

uη

}
, (24)

then the error vector at the k + 1-th iteration satisfies

δ(k+1) = Hδ(k) + q2(δ(k)), (25)

where q2 : Rn → Rn is the residual such that

‖q2(δ(k))‖ ≤
(
‖∇PC(z∗η)‖2uηc2(x∗) + c2(z∗η)u2

η

)
‖δ(k)‖2.

(26)

The proof of Lemma 2 is given in Appendix C. Given
the nonlinear difference equation of form (25), we proceed
with characterizing the convergence of the error sequence
{δ(k)}∞k=0.

Remark 3. Dating back to 1964, Polyak [39] studied the
convergence of nonlinear difference equations of form

a(k+1) = T (a(k)) + q(a(k)), for k ∈ N, (27)

where a(0) ∈ Rn, T : Rn → Rn is a linear operator, and
q : Rn → Rn satisfies limt→0 sup‖a‖≤t ‖q(a)‖ / ‖a‖ = 0.
The author showed that if the operator T satisfies ‖T k‖2 ≤
c(ζ)(ρ+ζ)k, for some ρ < 1 and arbitrarily small ζ > 0, then
{a(k)}∞k=0 approaches zero with sufficiently small ‖a(0)‖:

‖a(k)‖ ≤ C(ζ)‖a(0)‖(ρ+ ζ)k. (28)

Here c(ζ) and C(ζ) are unknown constants that could grow to
infinity as ζ → 0. Applying this result to (25) with a(k) = δ(k)
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and T = H , one can show that the error vector of Algorithm 1
converges to 0 with the asymptotic linear rate ρ(H), provided
that ρ(H) < 1 and ‖δ(0)‖ is sufficiently small. However,
we note that the proof of (28) in [39] is adapted from a
more general result on the stability of differential equations
in [52]. This technique can not provide the precise control
of the ROC and the number of iterations required to reach
a certain accuracy (i.e., how small ‖a(0)‖ is as well as how
large the factor C(ζ) is) needed for our convergence analysis
of PGD. Alternatively, we utilize our previous result in [37]
that eliminates the dependence on ζ in the expression of the
linear rate, at the cost of an additional assumption on the
diagonalizability of H .3 Additionally, our approach offers
explicit expressions of the ROC and the number of required
iterations (as in (13) and (16), respectively).

Step 2: Our approach for analyzing the convergence of the
nonlinear difference equation (24) is to leverage the eigen-
decomposition H = QΛQ−1 and consider the transformed
error vector as follows.

Lemma 3. Let δ̃(k) = Q−1δ(k) be the transformed error
vector. If (13) holds and the spectral radius of H is strictly
less than 1, i.e., ρ(H) < 1, then, for all k ∈ N, we have

δ̃(k+1) = Λδ̃(k) + q3(δ̃(k)), (29)

where the residual q3(δ̃(k)) = Q−1q2(Qδ̃(k)) satisfies
‖q3(δ̃(k))‖ ≤ (q/‖Q−1‖2)‖δ̃(k)‖2 for q given in (15).

The proof of Lemma 3 is given in Appendix D. Taking
the norms of both sides of (29) and applying the triangle
inequality, we obtain

‖δ̃(k+1)‖ ≤ ρ(H)‖δ̃(k)‖+
q

‖Q−1‖2
‖δ̃(k)‖2. (30)

This inequality, holding for all k ∈ N, is the key to the
convergence of the transformed error sequence in the next step.
Step 3: If we replace the inequality symbol in (30) by
the equality symbol, then we obtain an asymptotically-linear
quadratic difference equation whose convergence is studied in
[37]. Indeed, the following lemma states that the norm of the
transformed error vector is governed by this asymptotically-
linear quadratic system dynamic:

Lemma 4. Assume the same setting as Lemma 3. Then, for
any desired accuracy 0 < ε̃ < 1, we have ‖δ̃(k)‖ ≤ ε̃‖δ̃(0)‖
for all

k ≥ log(1/ε̃)

log(1/ρ(H))
+ c3(ρ(H), τ), (31)

where τ = q‖δ̃(0)‖/‖Q−1‖2/(1− ρ(H)) ∈ (0, 1) and

c3(ρ, τ) =
E1

(
log 1

ρ+τ(1−ρ)

)
− E1

(
log 1

ρ

)
ρ log(1/ρ)

+
1

2ρ
log

(
log(1/ρ)

log
(
1/(ρ+ τ(1− ρ))

))+ 1, (32)

for E1(t) =
∫∞
t

e−z

z dz being the exponential integral [53].

3In particular, the bound in (16) suggests ‖a(k)‖ ≤ C‖a(0)‖ρk , for
constant C = ρκ(Q)ec3 , which is tighter than (28).

The proof of Lemma 4 is given in Appendix E.
Step 4: Finally, we show the convergence of ‖δ(k)‖ based on
the convergence of ‖δ̃(k)‖. From (31), substituting ε̃ = ε/κ(Q)
and identifying c3 as c3(ρ(H), τ), we obtain (16). Thus, it
remains to prove that the accuracy on the transformed error
vector ‖δ̃(k)‖ ≤ ε̃‖δ̃(0)‖ is sufficient for the accuracy on the
original error vector ‖δ(k)‖ ≤ ε‖δ(0)‖. Indeed, given

‖δ̃(k)‖ ≤ ε̃‖δ̃(0)‖ =
ε

‖Q‖2‖Q−1‖2
‖δ̃(0)‖,

we have

‖δ(k)‖ = ‖Qδ̃(k)‖ ≤ ‖Q‖2‖δ̃(k)‖

≤ ‖Q‖2
ε

‖Q‖2‖Q−1‖2
‖δ̃(0)‖

=
ε

‖Q−1‖2
‖δ̃(0)‖ ≤ ε‖δ(0)‖,

where the last inequality stems from ‖δ̃(0)‖ = ‖Q−1δ(0)‖ ≤
‖Q−1‖2‖δ(0)‖. This completes our proof of Theorem 1.

IV. APPLICATIONS

In this section, we demonstrate the application of our
proposed framework to a collection of well-known problems in
machine learning and signal processing. The constraint sets in
these problems vary from as simple as an affine subspace (A)
and a sphere (C) to more complex algebraic varieties such as
the s-sparse vector set (B) and the low-rank matrix set (D). We
consider both problems with known convergence rate results
and problems for which the rate is unavailable. The former
allows us to verify the correctness of our analysis against the
known rate results, while for the latter numerical experiments
are used to verify the rate. Additionally, we illustrate how ROC
can be obtained for each problem. Due to space limitation,
we restrict the illustration of our framework to the four
aforementioned applications. While we believe that additional
applications can be considered (see the potential applications
of our framework in Section V), such applications may require
a more elaborate development. Our goal in this section is
to offer a recipe for analyzing the convergence of PGD for
different applications using the proposed framework. Table I
describes the steps we follow to obtain the asymptotic linear
rate and the region of linear convergence in each application.
Table II summarizes our local convergence results on the four
problems presented in this section. The detailed analysis is
given below.

A. Linear Equality-Constrained Least Squares

As a sanity check, we start with a simple example of the
so-called linear equality-constrained least squares (LECLS)

min
x∈Rn

1

2
‖Ax− b‖2 s.t. Cx = d, (33)

where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, and d ∈ Rp. In ad-
dition, we assume that p < n and C has linearly independent
rows. The LECLS problem finds application in a wide range of
areas such as linear-phase system identification [54], antenna
array processing [55], and adaptive array processing [56].
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TABLE I: General recipe for local convergence analysis.

Step 1: Identify A, b, C, and PC .

Step 2: Establish the conditions for x∗ ∈ C to be a Lipschitz station-
ary point of (1). In particular, (i) PC is Lipschitz-continuously
differentiable at every x∗ with ∇PC(x∗), c1(x∗), and
c2(x∗); and (ii) the stationarity equation (8) holds.

Step 3: Establish the conditions for η > 0 such that (i) x∗ is a fixed
point of Algorithm 1 with step size η, i.e., x∗ = PC(z∗η),
for z∗η = x∗ − ηA>(Ax∗ − b); and (ii) PC is Lipschitz-
continuously differentiable at z∗η with ∇PC(z∗η), c1(z∗η), and
c2(z∗η).

Step 4: Determine the asymptotic linear rate ρ as the spectral radius
of H given by (12). (If ∇PC(z∗η) = ∇PC(x∗), (19) can be
used instead.)

Step 5: Establish the conditions for ρ < 1, which guarantees local
linear convergence. Thereby, combine these conditions with
the previous conditions obtained from Steps 2 and 3.

Step 6: If H is diagonalizable, determine the region of linear con-
vergence given by (13). (If ∇PC(z∗η) = ∇PC(x∗), (20) can
be used instead.)

While this problem can be solved efficiently using the method
of Lagrange multipliers [57] or the method of weighting [58],
we limit our interest to using PGD to solve (33) to demonstrate
the applicability of our analysis. In the literature, this algorithm
is referred to as the projected Landweber iteration [59]–[62].
While these works provide bounds on the linear convergence
of PGD for different variants of linear equality-constrained
problems, we have not found any closed-form expression of
the asymptotic rate of linear convergence.
Step 1: In this example, A and b are given explicitly in (33).
The constraint set C is the closed convex affine subspace

C = {x ∈ Rn | Cx = d}.

The orthogonal projection onto this subspace is given in a
closed-form expression as PC(x) = x−C>(CC>)−1(Cx−
d), for all x ∈ Rn [63]. Since C has full row rank,
it admits a compact singular value decomposition (SVD)
C = UCΣCV

>
C , where ΣC ∈ Rp×p is a diagonal matrix

with positive diagonal entries, UC ∈ Rp×p and VC ∈ Rn×p
satisfy U>CUC = V >C VC = Ip. Denote V ⊥C ∈ Rn×(n−p) the
orthogonal complement of VC , i.e., V ⊥C (V ⊥C )>= In−VCV >C
and (V ⊥C )>V ⊥C = In−p. Substituting the SVD of C back into
the aforementioned expression of PC yields

PC(x) = V ⊥C (V ⊥C )>x+ d̃, (34)

where d̃ = VCΣ−1
C U

>
Cd = C†d.

Step 2: From (34), we obtain the difference between the two
projections of x + δ and x onto C, for any x, δ ∈ Rn, as
PC(x+ δ)− PC(x) = V ⊥C (V ⊥C )>δ. Using Definition 1 with
the note that ΠC(x + δ) is always singleton, we have PC is
Lipschitz-continuously differentiable at every x ∈ R with

∇PC(x) = V ⊥C (V ⊥C )>, c1(x) =∞, c2(x) = 0. (35)

Due to the independence from x, we also have PC is Lipschitz-
continuously differentiable at every x∗ ∈ C with

∇PC(x∗) = V ⊥C (V ⊥C )>, c1(x∗) =∞, c2(x∗) = 0.

Next, substituting ∇PC(x∗) = V ⊥C (V ⊥C )> into the stationarity
equation (8) yields V ⊥C (V ⊥C )>A>

(
Ax∗ − b

)
= 0. Since

V ⊥C ∈ Rn×(n−p) has full-rank, we can omit the left most
V ⊥C and obtain the condition for x∗ ∈ C to be a Lipschitz
stationary point of (33) as

(AV ⊥C )>(Ax∗ − b) = 0, (36)

which means Ax∗ − b is in the left null space of AV ⊥C .4

Step 3: Evaluating the projection in (34) at z∗η = x∗ −
ηA>(Ax∗ − b) and using the stationarity condition (36)
to eliminate the term ηV ⊥C (V ⊥C )>A>(Ax∗ − b), we have
PC(z∗η) = x∗ for any η > 0. Thus, the condition in this
step for x∗ to be a fixed point of Algorithm 1 is η > 0.
In addition, substituting x = z∗η into (35), we obtain PC is
Lipschitz-continuously differentiable at z∗η with

∇PC(z∗η) = V ⊥C (V ⊥C )>, c1(z∗η) =∞, c2(z∗η) = 0.

Step 4: Since ∇PC(z∗η) = ∇PC(x∗) = V ⊥C (V ⊥C )>, using
(19), we obtain the asymptotic linear rate as

ρ = max{|1− ηλ1|, |1− ηλn−p|}, (37)

where λ1 and λn−p are the largest and smallest eigenvalues
of (AV ⊥C )>AV ⊥C , respectively.
Step 5: From (37), we have ρ < 1 if and only if
(AV ⊥C )>AV ⊥C has full rank and 0 < η < 2/‖AV ⊥C ‖22. It
is noted that the latter condition is sufficient for the condition
η > 0 in Step 3.
Step 6: Since c1(x∗) = c1(z∗η) =∞ and c2(x∗) = c2(z∗η) =
0, the region of convergence given by (20) is the entire space
Rn, which implies global convergence.

Remark 4. The explicit expression of the convergence rate in
(37) offers a simple method to select the optimal step size:

ηopt = argmin
0<η<2/‖AV ⊥C ‖22

max{|1− ηλ1|, |1− ηλn−p|}

=
2

λ1 + λn−p
. (38)

Using η = ηopt, we obtain the optimal rate of convergence

ρopt = 1− 2

κ((AV ⊥C )>AV ⊥C ) + 1
. (39)

As a comparison, the optimal convergence rate of gradient
descent for the unconstrained problem is given by [50]

uopt = 1− 2

κ(A>A) + 1
.

Recall from Remark 2 that ρopt ≤ uopt due to the interlacing
of eigenvalues of (AV ⊥C )>AV ⊥C and A>A.

B. Iterative Hard Thresholding for Sparse Recovery

In compressed sensing, one would like to reconstruct a
sparse signal by finding solutions to under-determined linear
systemsAx = b, whereA ∈ Rm×n and b ∈ Rm (for m < n).

4Here, it is interesting to note that any stationary point of (33) is a global
minimizer since (33) is a convex optimization problem.
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TABLE II: Summary of local convergence analysis for four problems: linear equality-constrained least squares (Sec. IV-A),
sparse recovery (Sec. IV-B), least squares with a unit norm constraint (Sec. IV-C), and matrix completion (Sec. IV-D). In the
second row, v∗ = A>(Ax∗ − b). In the third row, K = (AUx∗)

>AUx∗ . We refer the reader to each of the corresponding
sections for further details.

Problem formulation Condition(s) for linear convergence Asymptotic rate of convergence ρ Region of convergence

min 1
2
‖Ax− b‖2

s.t. Cx = d

{
K = (AV ⊥C )>AV ⊥C has full rank
0 < η < 2/‖AV ⊥C ‖

2
2

max{|1− ηλ1(K)|, |1− ηλn−p(K)|} ‖x− x∗‖ <∞

min 1
2
‖Ax− b‖2

s.t. ‖x‖0 ≤ s

K = (ASx∗ )>ASx∗ has full rank

0 < η < min{ 2
‖ASx∗‖22

,
|x∗[s]|
‖v∗‖∞

}
max{|1− ηλ1(K)| , |1− ηλs(K)|} ‖x− x∗‖ < min{

|x∗[s]|√
2
,
|x∗[s]|−η‖v

∗‖∞
√

2‖In−ηA>A‖2
}

min 1
2
‖Ax− b‖2

s.t. ‖x‖ = 1

{
0 < η <∞ if γ ≤ −λ1(K)

0 < η < 2
γ+λ1(K)

o.t.w.
1

1−ηγ max{|1− ηλ1(K)|, |1− ηλn−1(K)|} ‖x− x∗‖ ≤ 1−ρ
2(t2+t)

, t =
‖In−ηA>A‖2

1−ηγ

min 1
2
‖PΩ(X −M)‖2F

s.t. rank(X) ≤ r

{
K = Q>⊥SΩS>ΩQ⊥ has full rank
0 < η < 2

‖Q>⊥SΩS>ΩQ⊥‖2
max{|1− ηλ1(K)|, |1− ηλr(m+n−r)(K)|} ‖X −X∗‖F ≤ (1−ρ)σr(X∗)

8(1+
√

2)

This problem can be formulated as an L0-norm constrained
least squares:

min
x∈Rn

1

2
‖Ax− b‖2 s.t. ‖x‖0 ≤ s. (40)

In the literature, the PGD algorithm for solving (40) is
often known as iterative hard thresholding (IHT), with myriad
applications in medical imaging [64], MIMO communication
[65], [66], antenna arrays [67], and scene recognition [68]. The
convergence of a special case of IHT in which ‖A‖2 < 1 and
η = 1 has been well-studied in [2], [3], under the restricted
isometry property (RIP) assumption onA. In the following, we
demonstrate the application of our framework to establishing
a local convergence analysis of IHT with a range of different
step sizes, without requiring the RIP of A.
Step 1: In this example, A and b are given explicitly in (40),
and the constraint set C is the closed non-convex set of s-
sparse vectors

C = {x ∈ Rn | ‖x‖0 ≤ s},

with the projection PC : Rn → Rn given by [2]

[PC(x)]i =

{
0 if |xi| < |x[s]|
xi if |xi| ≥ |x[s]|

for i = 1, . . . , n, (41)

where xi and x[s] denote the ith coordinate and the sth largest
(in magnitude) element of a vector x ∈ Rn, respectively. In
the case x has multiple elements with the same magnitude as
x[s], e.g., x[s] = x[s+1] > 0, we sort these entries based on the
(descending) lexicographical order so that (41) is well-defined
(see [2]-p. 10).
Step 2: In contrast to the previous example, the projection here
is nonlinear and non-unique since the set C is a real algebraic
variety but not smooth in those points in Rn of sparsity strictly
less than s. The smooth part of C is the subset

C=s = {x ∈ Rn | ‖x‖0 = s}

of vectors with exactly s non-zero elements. In Supplementary
Material Section III, we show that any x∗ ∈ Φ=s and
x ∈ B(x∗, |x∗[s]|/

√
2) share the same index set of s-largest

elements (in magnitude), denoted by Ωs(x
∗).5 Let the indices

in Ωs(x
∗) be i1 ≤ . . . ≤ is and Sx∗ = [ei1 , . . . , eis ] ∈ Rn×s.

Then, we have (Sx∗)
>Sx∗ = Is and

PC(x) = Sx∗S
>
x∗x, ∀x ∈ B(x∗, |x∗[s]|/

√
2). (42)

By Definition 1, we obtain PC is Lipschitz-continuously
differentiable at any x∗ ∈ Φ=s with

∇PC(x∗) = Sx∗S
>
x∗ , c1(x∗) =

1√
2
|x∗[s]|, c2(x∗) = 0.

Similar to the previous example, the stationarity equation for
x∗ ∈ C=s is given by

(ASx∗)
>(Ax∗ − b) = 0. (43)

Thus, we obtain the conditions for x∗ ∈ C to be a Lipschitz
stationary point of (40) are x∗ ∈ C=s and the vector v∗ =
A>(Ax∗ − b) satisfies v∗i = 0 for all i ∈ Ωs(x

∗).
Step 3: First, following a similar approach to that in [2], we
show that the condition in this step for x∗ to be a fixed point
of Algorithm 1 is

0 < η <
|x∗[s]|
‖v∗‖∞

. (44)

Since v∗i = 0 for all i ∈ Ωs(x
∗), we have z∗η = x∗ − ηv∗

satisfies (z∗η)i = x∗i for all i ∈ Ωs(x
∗). Moreover, for any

indices i ∈ Ωs(x
∗) and j ∈ {1, . . . , n} \ Ωs(x

∗), we have

|(z∗η)j | = |x∗j − ηv∗j | = η|v∗j |

<
|x∗[s]|
‖v∗‖∞

|v∗j | ≤ |x∗[s]| ≤ |x
∗
i | = |(z∗η)i|,

where the second inequality stems from |v∗j | ≤ ‖v∗‖∞. There-
fore, Ωs(x

∗) contains the s-largest (in magnitude) elements of
z∗η , and hence, x∗ = PC(z∗η).

Second, we consider the Lipschitz-continuous differentia-
bility of PC at z∗η . Given η in (44), by the same argument
as in Supplementary Material Section III, one can show that
every point in B(z∗η , (|(z∗η)[s]| − |(z∗η)[s+1]|)/

√
2) shares the

5It is interesting to note that |x∗
[s]
|/
√

2 is the largest possible radius. A
counter-example is also constructed in Supplementary Material Section III.
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same index set of s-largest elements (in magnitude) with z∗η ,
which is Ωs(x

∗). Here, we note that |(z∗η)[s]| − |(z∗η)[s+1]| =
|x∗[s]|−η‖v

∗‖∞. Thus, we obtain PC is Lipschitz-continuously
differentiable at z∗η with

∇PC(z∗η) = Sx∗S
>
x∗ ,

c1(z∗η) =
1√
2

(
|x∗[s]| − η‖v

∗‖∞
)
, c2(z∗η) = 0.

Step 4: Since ∇PC(z∗η) = ∇PC(x∗) = Sx∗S
>
x∗ , using (19),

we obtain the asymptotic linear rate as

ρ = max{|1− ηλ1| , |1− ηλs|}. (45)

where λ1 and λs are the largest and smallest eigenvalues of
(ASx∗)

>ASx∗ , respectively.
Step 5: From (45), ρ < 1 if and only if (ASx∗)

>ASx∗ has
full rank and

0 < η <
2

‖ASx∗‖22
. (46)

Combining (44) and (46) yields the condition on the step size

0 < η < min

{
2

‖ASx∗‖22
,
|x∗[s]|
‖v∗‖∞

}
. (47)

Here, we note that the condition (ASx∗)
>ASx∗ has full rank

is related to the restricted isometry property (RIP) assumption
on A: (1−δs) ‖x‖2 ≤ ‖Ax‖2 ≤ (1+δs) ‖x‖2, for δs ∈ (0, 1)
and any s-sparse vector x ∈ Rn [23]. In the reduced-form, we
can rewrite the RIP assumption as

0 < (1− δs) ‖y‖2 ≤ ‖ASy‖2 ≤ (1 + δs) ‖y‖2 , (48)

for any y ∈ Rs and any selection matrix S ∈ Rn×s
obtained by randomly choosing s columns from the n × n
identity matrix. Substituting S = Sx∗ into (48), we obtain
(ASx∗)

>ASx∗ has full rank.
Step 6: Recall that c2(x∗) = c2(z∗η) = 0. From (20), the
region of convergence is given by

‖x− x∗‖ < min

{ |x∗[s]|√
2
,
|x∗[s]| − η‖v

∗‖∞
√

2‖In − ηA>A‖2

}
. (49)

Remark 5. Similar to (38) and (39), the optimal step size and
the optimal convergence rate are given by

ηopt =
2

λ1((ASx∗)>ASx∗) + λs((ASx∗)>ASx∗)
,

ρopt = 1− 2

κ((ASx∗)>ASx∗) + 1
. (50)

We consider the following numerical experiment to verify the
analytical rate in (45). We start by generating A, x∗, and
b as follows. First, we sample an 200 × 300 sensing matrix
A with i.i.d Gaussian distributed entries N (0, 1/200).6 Next,
we create a 10-sparse solution x∗ by randomly selecting 10
coordinates and assigning non-zero values to them based on
i.i.d normal distributionN (0, 1). Finally, we set b = Ax∗. We
apply PGD with different step sizes (listed in Fig. 2) including
ρopt in (50) and record the value of

∥∥x(k) − x∗
∥∥ as a function

6Note that such random matrix is shown to satisfy the RIP constraint [23].

50 100 150 200 250

10
-10

10
-5

10
0

Fig. 2: (Log-scale) plot of the distance between the current
iterate and the local minimizer of the sparse recovery problem
as a function of the number of iterations. Each solid line
corresponds to PGD with a different fixed step size. Each
dashed line represents the respective exponential bound ρk

up to a constant, where the theoretical rate ρ is given by (45).
In the experiment, we select m = 200, n = 300, and s = 10.
The optimal step size ηopt = 0.97273 is computed by (50),
with the corresponding optimal rate ρopt = 0.3613.

of k. In Fig. 2, the aforementioned curves are presented along
with their analytic bounds given by ρk (up to a constant).
The match in the slope between the analytic rate curve and
the empirical rate curve verifies the analytic rate predicts
accurately the asymptotic rate obtained empirically.

Remark 6. In Supplementary Material Section III, we further
show that any stationary point x∗ must be a local minimum
of (40). Moreover, the condition (ASx∗)

>ASx∗ has full rank
in Step 5 implies x∗ is a strict local minimum of (40).
Finally, it is interesting to note that in [2], the authors assume
‖A‖2 < 1 and select η = 1. With these assumptions, the
rate in (45) simplifies to ρ = 1 − λs((ASx∗)

>ASx∗) =∥∥Is − (ASx∗)
>ASx∗

∥∥
2
, which is consistent with Eqn. (3.9)

in [2].

C. Least Squares with the Unit Norm Constraint
A common constraint that arises in regularization methods

for ill-posed problems is the spherical constraint [9], [69], [70].
In particular, we consider the following optimization problem

min
x∈Rn

1

2
‖Ax− b‖2 s.t. ‖x‖ = 1, (51)

where A ∈ Rm×n and b ∈ Rm.
Step 1: In this example, A and b are given explicitly in (51),
and the constraint set C is the closed non-convex sphere

C = {x ∈ Rn | ‖x‖ = 1},

with the projection PC : Rn → Rn given by

PC(x) =

{
x
‖x‖ if x 6= 0,

e1 if x = 0.
(52)
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Step 2: In Example 1, we showed that the projection onto
the unit sphere is Lipschitz-continuously differentiable at any
x 6= 0. Since 0 6∈ C, we have PC is Lipschitz-continuously
differentiable at every x∗ ∈ C with

∇PC(x∗) = In − x∗(x∗)>, c1(x∗) =∞, c2(x∗) = 2.

In addition, substituting ∇PC(x∗) = In − x∗(x∗)> into the
stationarity equation (8) yields

(
In − x∗(x∗)>

)
A>(Ax∗ −

b) = 0. Equivalently, we have

A>(Ax∗ − b) = γx∗, (53)

where γ = (x∗)>A>(Ax∗ − b) is the Lagrange multiplier at
x∗ (see Lemma 1 in [33]). Thus, we obtain the condition for
x∗ ∈ C to be a Lipschitz stationary point of (51) is x∗ and
A>(Ax∗ − b) are collinear.
Step 3: First, the necessary condition for PC to be Lipschitz-
continuously differentiable at z∗η is z∗η ∈ singleton ΠC , i.e.,
z∗η 6= 0. From (53), we have z∗η = x∗ − ηA>(Ax∗ − b) =
(1− ηγ)x∗. Hence, z∗η 6= 0 is equivalent to 1− ηγ 6= 0. Now
the projection PC at z∗η 6= 0 is given by

PC(z∗η) =
(1− ηγ)x∗

‖(1− ηγ)x∗‖
=

1− ηγ
|1− ηγ|

x∗,

which implies x∗ = PC(z∗η) if and only if 1− ηγ > 0. Thus,
we obtain the condition for η > 0 such that x∗ is a fixed point
of Algorithm 1 and PC is Lipschitz-continuously differentiable
at z∗η is 1− ηγ > 0, which is equivalent to{

η ∈ (0,∞) if γ ≤ 0,

η ∈ (0, 1
γ ) if γ > 0.

(54)

Second, it follows from (6) that PC is Lipschitz-
continuously differentiable at z∗η with

∇PC(z∗η) =
1

‖z∗η‖

(
In −

z∗η(z∗η)>

‖z∗η‖2

)
=
In − x∗(x∗)>

1− ηγ
,

c1(z∗η) =∞, c2(z∗η) =
2

‖z∗η‖2
=

2

(1− ηγ)2
.

Step 4: Denote P⊥x∗ = In − x∗(x∗)>. From (12), the
asymptotic linear rate is given by

ρ = ρ

(
1

1− ηγ
P⊥x∗(In − ηA>A)P⊥x∗

)
=

1

1− ηγ
‖P⊥x∗(In − ηA>A)P⊥x∗‖2.

Let P⊥x∗ = Ux∗U
>
x∗, where Ux∗ ∈ Rn×(n−1) is a semi-

orthogonal matrix whose columns provide a basis for the null
space of x∗. Then, following the same derivation as in the
proof of Corollary 1, we obtain

ρ =
1

1− ηγ
max{|1− ηλ1|, |1− ηλn−1|}, (55)

where λ1 and λn−1 are the largest and smallest eigenvalues
of (AUx∗)

>AUx∗ , respectively.
Step 5: Since |1− ηλ| /(1−ηγ) < 1 is equivalent to ηγ−1 <
1− ηλ < 1− ηγ, we have ρ < 1 if and only if

γ < λn−1 (56)

and

η
(
γ + λ1

)
< 2. (57)

Similar to (54), the inequality in (57) can be rewritten as{
η ∈ (0,∞) if γ ≤ −λ1,

η ∈ (0, 2
γ+λ1

) if γ > −λ1.

Finally, we note that conditions (56) and (57) together imply
the condition 1−ηγ > 0 in Step 3 since 2ηγ < η(γ+λn−1) ≤
η(γ + λ1) < 2.
Step 6: To determine the region of linear convergence, we
first recall that c1(x∗) = c1(z∗η) =∞. Second, we have

‖∇PC(z∗η)‖2 =

∥∥∥∥In − x∗(x∗)>1− ηγ

∥∥∥∥
2

=
1

1− ηγ
.

Third, since H = P⊥x∗(In − ηA>A)P⊥x∗/(1 − ηγ) is sym-
metric, one can choose Q in the eigendecomposition H =
QΛQ−1 to be orthogonal, with κ(Q) = 1. Thus, from (13),
we obtain the region of linear convergence as

‖x− x∗‖ ≤ 1− ρ
2(t2 + t)

, (58)

where t = ‖In − ηA>A‖2/(1− ηγ).

Remark 7. The local linear rate in (55) matches the rate
provided by Theorem 1 in [33]. Compared to the setting in
[33], here we consider a special case of the quadratic that
is convex (and hence, λd ≥ 0). By minimizing the rate in
(55) over η, we also obtain the same optimal rate of linear
convergence given by Lemma 5 in [33]:

ρopt =
λ1 − λn−1

λ1 + λn−1 − 2γ
with ηopt =

2

λ1 + λn−1
.

Interestingly, condition (56) implies x∗ is a strict local min-
imum of (51) (see Lemma 2 in [33]). Since ρ < 1 is one
of the conditions in Theorem 1, our analysis requires x∗ to
be a strict local minimum of (51) in order to obtain linear
convergence. Finally, our framework provides the region of
linear convergence in (58), which is not given in [33].

D. Matrix Completion

1) Background: The last application is an application of
our framework to the matrix case. In matrix completion [71],
given a rank-r matrix M ∈ Rm×n (for 1 ≤ r ≤ min{m,n})
with a set of its observed entries indexed by Ω, of cardinality
0 < s < mn, we wish to recover the unknown entries of M in
the complement set Ω̄ by solving the following optimization:

min
X∈Rm×n

1

2
‖PΩ(X −M)‖2F s.t. rank(X) ≤ r, (59)

where PΩ : Rm×n → Rm×n is the orthogonal projection onto
the set of m× n matrices supported in Ω, i.e.,

[PΩ(X)]ij =

{
Xij if (i, j) ∈ Ω,

0 if (i, j) 6∈ Ω.

It is noted that while M is unknown, the projection PΩ(M)
is unambiguously determined by the observed entries in M .
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In the literature, the PGD algorithm for solving (59) is also
known as the Singular Value Projection (SVP) algorithm for
matrix completion [12], [13], [72], [73], with the update

X(k+1) = PM≤r

(
X(k) − ηPΩ(X(k) −M)

)
.

Here, M≤r is the set of matrices of rank at most r, i.e.,

M≤r = {X ∈ Rm×n | rank(X) ≤ r}.

In addition, the orthogonal projection PM≤r
: Rm×n →M≤r

is defined by Eckart–Young–Mirsky theorem [74] as follows.
Let SVD(X) be the set of all triples (Σ,U ,V ) such that
X = UΣV > and{

Σ = diag(σ1(X), . . . , σn(X)),

U ∈ Rm×n,V ∈ Rn×n : U>U = V >V = In.

Denote ui(X) and vi(X) the ith columns of U and V ,
respectively. Then, the set of all projections of X onto M≤r
is given by

ΠM≤r
(X) =

{ r∑
i=1

σi(X)ui(X)vi(X)>

| (Σ,U ,V ) ∈ SVD(X)
}
. (60)

The set ΠM≤r
(X) is singleton if and only if σr(X) = 0

or σr(X) > σr+1(X). In the case ΠM≤r
(X) has multi-

ple elements, we define PM≤r
(X) as the greatest element

in ΠM≤r
(X) based on the lexicographical order. We re-

emphasize that our subsequent analysis holds independently
of this choice.

In differential geometry, it is well-known that M≤r is a
closed set of Rm×n but non-smooth in those points of rank
strictly less than r [75]. Similar to sparse recovery, the smooth
part of M≤r is the set of matrices of fixed rank r:

M=r = {X ∈ Rm×n | rank(X) = r}.

At any X∗ ∈M=r, it is shown [38] that derivative of PM≤r

is a linear mapping from Rm×n to Rm×n satisfying

∇PM≤r
(X∗)(∆) = ∆− PU⊥∆PV⊥ , (61)

where PU⊥ and PV⊥ are the projections onto the left and
right null spaces of X∗, respectively. More importantly, for
any ∆ ∈ Rm×n, Theorem 3 in [38] asserts that

sup
Y ∈ΠM≤r

(X∗+∆)

‖Y −X∗ −∇PM≤r
(X∗)(∆)‖F

≤ 4(1 +
√

2)

σr(X∗)
‖∆‖2F . (62)

2) Vectorized version of matrix completion: To apply our
proposed framework to matrix completion, we consider a
vectorized version of (59) as follows. Slightly extending the
notation, we denote C = {vec(X) | X ∈ M≤r} and
vec(Ω) = {(j− 1)m+ i | (i, j) ∈ Ω} with s distinct elements
1 ≤ i1 < . . . < is ≤ mn. Let SΩ = [ei1 , . . . , eis ] ∈ Rmn×s
be the selection matrix satisfying{

S>ΩSΩ = Is,

vec
(
PΩ(X)

)
= SΩS

>
Ω vec(X).

Then, problem (59) can be represented as

min
x∈Rmn

1

2
‖SΩS

>
Ωx− SΩS

>
Ω vec(M)‖2 s.t. x ∈ C.

Step 1: In this vectorized version of matrix completion, we
have A = SΩS

>
Ω, b = SΩS

>
Ω vec(M), and C is a closed non-

convex set. For any vector x ∈ Rmn, let X = vec−1(x)
with PM≤r

(X) =
∑r
i=1 σi(X)ui(X)vi(X)>, for some

(Σ,U ,V ) ∈ SVD(X). The projection PC is given by
PC(x) = vec(

∑r
i=1 σi(X)ui(X)vi(X)>). Using the fact

that vec(uv>) = v⊗u, for any vectors u and v of compatible
dimensions, PC can then be represented as

PC(x) =

r∑
i=1

σi(X)
(
vi(X)⊗ ui(X)

)
. (63)

Step 2: In the following, we show that PC is Lipschitz-
continuously differentiable at any point in the set

C=r = {vec(X) |X ∈M=r}.

In particular, for any x∗ ∈ C=r, we prove that PC is Lipschitz-
continuously differentiable at x∗ with

∇PC(x∗) = P⊥U⊥V⊥ ,

c1(x∗) =∞, c2(x∗) =
4(1 +

√
2)

σr(X∗)
,

where X∗ = vec−1(x∗). Indeed, the constants c1(x∗) and
c2(x∗) are obtained from the matrix inequality form (62).
Regarding ∇PC(x∗), let PU⊥ and PV⊥ be the projections
onto the left and right null spaces of X∗, respectively. Denote
PU⊥V⊥ = PV⊥ ⊗ PU⊥ and P⊥U⊥V⊥ = Imn − PU⊥V⊥ . Since
vec(ABC) = (C>⊗A) vec(B), for any matrices A, B, and
C of compatible dimensions, (61) can be vectorized to obtain
∇PC(x∗)(δ) = (Imn − PV⊥ ⊗ PU⊥)δ = P⊥U⊥V⊥δ for any
δ ∈ Rmn.

Next, the stationarity condition (8) can be represented
using ∇PC(x∗)(δ) = P⊥U⊥V⊥δ as P⊥U⊥V⊥SΩS

>
Ω

(
SΩS

>
Ωx
∗ −

SΩS
>
Ω vec(M)

)
= 0. Denote Q⊥ ∈ Rmn×r(m+n−r) the ma-

trix satisfying Q>⊥Q⊥ = Ir(m+n−r) and Q⊥Q>⊥ = P⊥U⊥V⊥ .
Then, we obtain the conditions for x∗ to be a Lipschitz
stationary point of (59) are x∗ ∈ C=r and

Q>⊥SΩS
>
Ω

(
x∗ − vec(M)

)
= 0. (64)

Step 3: The stationarity condition (64) leads to two cases. The
first case is when Q>⊥SΩ has full (row-)rank and hence,

S>Ω
(
x∗ − vec(M)

)
= 0. (65)

In matrix form, (65) can be rewritten as PΩ(X∗) = PΩ(M),
which implies X∗ is a global minimizer of (59). Interestingly,
this case enjoys the special setting considered in Corollary 1
as

z∗η = x∗ − ηSΩS
>
Ω

(
x∗ − vec(M)

)
= x∗, (66)

for any η > 0. In the second case, if Q>⊥SΩ has rank strictly
less than r(m + n − r), then S>Ω

(
x∗ − vec(M)

)
may not

be 0 (e.g., a non-zero right singular vector of Q>⊥SΩ). This
implies z∗η 6= x∗ and one needs to characterize the Lipschitz-
continuous differentiability of the projection PC onto the set of
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low-rank matrices at z∗η that may not have exact rank r. While
the derivative of PC at a matrix with rank greater than r has
been studied in [38], [76], it requires complete development
of the error bound on the first-order expansion of this operator
to obtain the constants c1(z∗η) and c2(z∗η). For the purpose of
demonstration, we restrict our subsequent analysis to the first
case when Q>⊥SΩ has full (row-)rank. Since z∗η = x∗ in this
case, PC is Lipschitz-continuously differentiable at z∗η with

∇PC(z∗η) = P⊥U⊥V⊥ , c1(z∗η) =∞, c2(z∗η) =
4(1 +

√
2)

σr(X∗)
.

Step 4: Since ∇PC(z∗η) = ∇PC(x∗) = P⊥U⊥V⊥ , using (19),
we obtain the asymptotic linear rate as

ρ = max{|1− ηλ1|, |1− ηλr(m+n−r)|}, (67)

where λ1 and λr(m+n−r) are the largest and smallest eigen-
values of Q>⊥SΩS

>
ΩQ⊥, respectively.

Step 5: From (67), we have ρ < 1 if and only if Q>⊥SΩS
>
ΩQ⊥

has full rank and

0 < η <
2

‖Q>⊥SΩS>ΩQ⊥‖2
.

Here, we would like to point out the condition Q>⊥SΩS
>
ΩQ⊥

has full rank implies s ≥ r(m + n − r), which can be
interpreted as a requirement for the number of observations
being no less than the degree of freedom in matrix completion.
The invertibility of Q>⊥SΩS

>
ΩQ⊥ is also equivalent to the

injectivity of the sampling operator restricted to the tangent
space T toM≤r at X∗, denoted by AΩT in [71]-Section 4.2.
It is interesting to note that under the standard assumptions on
uniform sampling and incoherence property, Candès and Recht
[71] showed that AΩT is injective with high probability.
Step 6: Recall that c1(x∗) = c1(z∗η) =∞. Since ∇PC(z∗η) =
∇PC(x∗) = P⊥U⊥V⊥ , using (20), the region of linear conver-
gence is given by

‖x− x∗‖ ≤ (1− ρ)σr(X
∗)

8(1 +
√

2)
. (68)

Remark 8. Similar to (38) and (39), the optimal step size and
the optimal convergence rate are given by

ηopt =
2

λ1(Q>⊥SΩS>ΩQ⊥) + λr(m+n−r)(Q
>
⊥SΩS>ΩQ⊥)

,

ρopt = 1− 2

κ(Q>⊥SΩS>ΩQ⊥) + 1
. (69)

We consider the following numerical experiment to verify the
analytical rate in (67). The data is generated randomly as
follows. First, we sample two matrices A and B with i.i.d
normally distributed entries, of dimensions 50×3 and 40×3,
respectively. Next, we obtain the rank-3 matrix of dimension
50 × 40 as the product X∗ = AB>. Third, we select 800
observations uniformly at random among the 2000 positions
inX∗. We apply PGD with different step sizes (listed in Fig. 3)
including ηopt in (69) and record the value of

∥∥X(k) −X∗
∥∥
F

as a function of k. It can be seen from Fig. 3 that the
theoretical rate matches well the empirical rate, reassuring
the correctness of our analysis in the previous section.

200 400 600 800 1000 1200 1400 1600
10

-10

10
-5

10
0

Fig. 3: (Log-scale) plot of the distance between the current
iterate and the local minimizer of the matrix completion
problem as a function of the number of iterations. Each solid
line corresponds to PGD with a different fixed step size. Each
dashed line represents the respective exponential bound ρk up
to a constant, where the theoretical rate ρ is given by (67).
In the experiment, we select m = 50, n = 40, r = 3, and
s = 800. The optimal step size ηopt = 2.2833 is given by
(69), with the corresponding optimal rate ρopt = 0.9265.

Remark 9. The rate in (67) has not been proposed in the
literature. However, in the special case of using unit step size,
it matches the rate established for the IHTSVD algorithm in
[32]. In their work, the authors provide the result relative to
the matrix (SΩ̄)>PU⊥V⊥SΩ̄ instead of Q>⊥SΩS

>
ΩQ⊥, where

SΩ̄ ∈ Rmn×(mn−s) is the selection matrix that is complement
to SΩ. It can be shown that the two matrices share the same set
of eigenvalues while may only differ by the eigenvalues at 1.
Since IHTSVD uses η = 1, these unit eigenvalues do not affect
the maximization in (67). Compared to the local convergence
result in [32], our application in this subsection not only
considers PGD with different step sizes but also includes the
region of linear convergence in (68).

V. CONCLUSION AND FUTURE WORK

We presented a unified framework to analyze the local
convergence of projected gradient descent for constrained least
squares. Our analysis provides the asymptotic rate of conver-
gence in a closed-form expression, the number of iterations
required to reach certain accuracy, and the local region of
convergence. Notably, our technique relies on the Lipschitz-
continuous differentiability of the projection operator at two
key points: x∗ and z∗η . Finally, we demonstrated the ap-
plication of our proposed framework to local convergence
analysis of PGD in four well-known problems: linear equality-
constrained least squares, sparse recovery, least squares with
a unit norm constraint, and matrix completion.

While the work here focuses on the specific setting of
linear converges of the PGD algorithm, we believe it can
be expanded in several directions. First, our framework can
be utilized to analyze the following cases: (i) adaptive step
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size schemes (e.g., the backtracking line search rule), (ii)
accelerated methods (e.g., the Nesterov’s accelerated gradient
and the Heavy Ball method), (iii) general objective functions
other than least squares, and (iv) other algorithms for manifold
optimization such as Riemannian gradient descent. Another in-
teresting research direction is to sharpen the theoretical bound
on the ROC in order to better explain the actual region in
which the algorithm converges to the desired solution. Finally,
the proposed framework can be used to further study the
performance of PGD for a variety of constrained least squares
problems arising in the area of phase-only beamforming [10],
online power system optimization [77], spectral compressed
sensing [78], and linear dimensionality reduction [79].

APPENDIX A
PROOF OF LEMMA 1

Our goal in the proof of Lemma 1 is to show that if the
fixed point condition x∗ = PC(x∗ − ηA>(Ax∗ − b)) holds,
then the stationarity condition ∇PC(x∗)A>

(
Ax∗ − b

)
= 0

holds. Note that if A>(Ax∗ − b) = 0, then the stationarity
condition holds trivially. Hence, we focus on the proof for
A>(Ax∗ − b) 6= 0. We first show that for any 0 ≤ α < 1,
x∗ = PC(x∗ − ηA>(Ax∗ − b)) is a sufficient condition for

ΠC
(
x∗ − αηA>(Ax∗ − b)

)
= {x∗}. (70)

Then, using (70) and the differentiability of PC at x∗, we
prove that ∇PC(x∗)A>

(
Ax∗− b

)
= 0. We proceed with the

detailed proof.
First, let v∗ = A>(Ax∗ − b) and z∗αη = x∗ − αηv∗. On

the one hand, for any 0 ≤ α < 1 and y ∈ ΠC(z
∗
αη), we have

‖y − z∗η‖ = ‖(y − z∗αη) + (z∗αη − z∗η)‖
≤ ‖y − z∗αη‖+ ‖z∗αη − z∗η‖
= d(z∗αη, C) + ‖z∗αη − z∗η‖
≤ ‖x∗ − z∗αη‖+ ‖z∗αη − z∗η‖, (71)

where the first inequality uses the triangle inequality that holds
when y−z∗αη = β(z∗αη−z∗η), for some β ≥ 0. Using the fact
that z∗η = x∗ − ηv∗ and z∗αη = x∗ − αηv∗, we obtain

‖x∗ − z∗αη‖+ ‖z∗αη − z∗η‖ = ‖αηv∗‖+ ‖(1− α)ηv∗‖
= ‖αηv∗ + (1− α)ηv∗‖
= ‖ηv∗‖
= ‖x∗ − z∗η‖. (72)

From (71) and (72), we have

‖y − z∗η‖ ≤ ‖x∗ − z∗η‖, (73)

with the equality holding if and only if{
y − z∗αη = β(z∗αη − z∗η),

‖y − z∗αη‖ = ‖x∗ − z∗αη‖.
(74)

Using the fact that z∗η = x∗ − ηv∗ and z∗αη = x∗ − αηv∗,
(74) holds if and only if

β =
α

1− α
and y = x∗. (75)

On the other hand, since x∗ = PC(z∗η) and y ∈ C, we have

‖y − z∗η‖ ≥ ‖x∗ − z∗η‖. (76)

From (73) and (76), we conclude that ‖y−z∗η‖ = ‖x∗−z∗η‖.
Moreover, from (75), the equality holds if and only if y =
x∗. Since this holds for any y ∈ ΠC(z

∗
αη), we conclude that

ΠC(z
∗
αη) = {x∗} for all 0 ≤ α < 1.

Next, using the differentiability of the projection PC at x∗

from Definition 1, we have

lim
α→0

sup
y∈ΠC(x∗−αηv∗)

‖y − PC(x∗)−∇PC(x∗)(αηv∗)‖
‖αηv∗‖

= 0.

Substituting ΠC(x
∗ − αηv∗) = ΠC(z

∗
αη) = {x∗} and

PC(x∗) = x∗ into the last equation, we obtain

0 = lim
α→0

‖x∗ − x∗ − αη∇PC(x∗)v∗‖
‖αηv∗‖

= lim
α→0

αη ‖∇PC(x∗)v∗‖
αη ‖v∗‖

=
‖∇PC(x∗)v∗‖
‖v∗‖

,

which only holds if ∇PC(x∗)v∗ = 0. This completes our
proof of the lemma.

APPENDIX B
PROOF OF COROLLARY 1

In the following, under the assumption ∇PC(z∗η) =
∇PC(x∗) = Ux∗U

>
x∗, we show that (i) the asymptotic

convergence rate ρ(H) is given by (19), (ii) the sufficient
conditions for ρ(H) < 1 are (AUx∗)

>AUx∗ is full rank and
(18) holds, and (iii) the region of linear convergence can be
simplified from (13) to (20).

First, we prove (19) by simplifying the expression of H in
(17) and the fact that U>x∗Ux∗ = Id as follows. Substituting
∇PC(x∗) and ∇PC(z∗η) by Ux∗U>x∗ into (12) yields

H = Ux∗U
>
x∗(In − ηA>A)Ux∗U

>
x∗

= Ux∗(Id − ηU>x∗A>AUx∗)U>x∗,

where the second equality stems from U>x∗Ux∗ = Id. Since
H is symmetric, its spectral radius equals to its spectral norm:

ρ(H) = ‖Ux∗(Id − ηU>x∗A>AUx∗)U>x∗‖2.

Using the fact that the spectral norm is invariant under left-
multiplication by matrices with orthonormal columns and
right-multiplication by matrices with orthonormal rows (see
[63] - Exercise 5.6.9), we further have

ρ(H) = ‖Id − ηU>x∗A>AUx∗‖2. (77)

Let U>x∗A
>AUx∗ = ÛΛ̂Û> be an eigendecomposi-

tion, where Û ∈ Rd×d is an orthogonal matrix and
Λ̂ = diag(λ1(U>x∗A

>AUx∗), . . . , λd(U
>
x∗A

>AUx∗)). Since
Û>Û = Id, (77) can be represented as

ρ(H) =
∥∥∥Û(Id − ηΛ̂)Û>

∥∥∥
2

=
∥∥∥Id − ηΛ̂∥∥∥

2
.
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Now using the fact that the spectral norm of a diagonal matrix
is the maximum of the absolute values of its diagonal entries,
we obtain

ρ(H) = max
1≤i≤d

|1− ηλi(U>x∗A>AUx∗)|

= max{|1− ηλ1|, |1− ηλd|}.

Second, we establish the sufficient conditions for ρ(H) < 1
by bounding each term inside the maximum in (19) as follows.
Since λd ≥ 0, we have

−1 < 1− ηλ1 ≤ 1− ηλd ≤ 1, for i = 1, . . . , d,

if 0 < η < 2/λ1. It is also noted from the definition of the
spectral norm that ‖AUx∗‖22 = λ1. Therefore, ρ(H) ≤ 1
provided that (18) holds. The equality ρ(H) = 1 holds if
and only if λd = 0, i.e., (AUx∗)

>AUx∗ is singular. In other
words, when (AUx∗)

>AUx∗ is full rank and (18) holds, the
linear convergence is guaranteed as ρ(H) < 1.

Finally, the region of linear convergence in (20) is de-
termined based on simplifying (13) as follows. First, using
Remark 1, we obtain κ(Q) = 1. Second, from (17), we
have ‖∇PC(z∗η)‖2 = ‖PTx∗ (C)‖2 = 1. Third, substituting
κ(Q) = 1 and ‖∇PC(z∗η)‖2 = 1 into (13) yields (20). This
completes our proof of the corollary.

APPENDIX C
PROOF OF LEMMA 2

Our goal is to show the error vector δ(k) satisfies the
asymptotically-linear quadratic system dynamic in (25) and
to bound the norm of the residual q2 by (26).

First, our key idea in proving (25) is the Lipschitz-
continuous differentiability of PC at x∗ and at z∗η . Specifically,
for any k such that δ(k) admits a perturbation (I−ηA>A)δ(k)

that satisfies

‖(I − ηA>A)δ(k)‖ < c1(z∗η), (78)

applying the Lipschitz-continuous differentiability of PC at z∗η
to (23) yields

δ(k+1) = ∇PC(z∗η)(I − ηA>A)δ(k) + q1(δ(k)), (79)

where the residual q1 : Rn → Rn satisfies

‖q1(δ(k))‖ ≤ c2(z∗η)‖(I − ηA>A)δ(k)‖2

≤ c2(z∗η)u2
η‖δ(k)‖2. (80)

On the other hand, using the fact that x∗ = PC(x∗), x(k) =
PC(x(k)), and the Lipschitz-continuous differentiability of PC
at x∗ with the perturbation δ(k) ∈ B(0, c1(x∗)), we obtain

δ(k) = x(k) − x∗

= PC(x∗ + δ(k))− PC(x∗)
= ∇PC(x∗)δ(k) + qx∗(δ

(k)), (81)

where the residual qx∗ : Rn → Rn satisfies ‖qx∗(δ(k))‖ ≤
c2(x∗)‖δ(k)‖2. We proceed with the proof of (25) by com-
bining the results from (79) and (81) as follows. Since
‖(I − ηA>A)δ(k)‖ ≤ ‖I − ηA>A‖2‖δ(k)‖ = uη‖δ(k)‖, the
sufficient condition for (78) is ‖δ(k)‖ < c1(z∗η)/uη . Thus,

‖δ(k)‖ < min{c1(x∗), c1(z∗η)/uη} is sufficient for both (79)
and (81). Substituting (81) into the RHS of (79), we obtain (25)
with q2(δ(k)) = ∇PC(z∗η)(I − ηA>A)qx∗(δ

(k)) + q1(δ(k)).
Next, to bound the norm of the residual q2, we apply the
triangle inequality as follows

‖q2(δ(k))‖ ≤‖∇PC(z∗η)(I − ηA>A)qx∗(δ
(k))‖

+ ‖q1(δ(k))‖. (82)

On the one hand, the first term on the RHS of (82) can be
bounded by

‖∇PC(z∗η)(I − ηA>A)qx∗(δ
(k))‖

≤ ‖∇PC(z∗η)‖2‖I − ηA>A‖2‖qx∗(δ(k))‖
≤ ‖∇PC(z∗η)‖2uηc2(x∗)‖δ(k)‖2. (83)

On the other hand, the second term on the RHS of (82) can be
bounded by (80). Combining the two bounds, we obtain (26).

APPENDIX D
PROOF OF LEMMA 3

In this section, our goal is to show the recursion on the
transformed error vector (29) holds at any k ∈ N provided
that the initial error vector lies within the region of linear
convergence described by (13). In the first step, we prove that
if the current transformed error vector lies within the region
of linear convergence

‖δ̃(k)‖ < min
{c1(x∗)

‖Q‖2
,
c1(z∗η)

‖Q‖2uη
,

1− ρ(H)

q/‖Q−1‖2

}
. (84)

then δ̃(k+1) = Λδ̃(k) + q3(δ̃(k)) and moreover, the next
transformed error vector also lies within the region of linear
convergence

‖δ̃(k+1)‖ < min
{c1(x∗)

‖Q‖2
,
c1(z∗η)

‖Q‖2uη
,

1− ρ(H)

q/‖Q−1‖2

}
. (85)

Therefore, by the principle of induction, the initial condition
on the transformed error vector, i.e., (84) holds at k = 0, is
the sufficient condition for (29) to hold at any k ∈ N. In the
second step, we show that (84) holds at k = 0 if the initial
condition on the error vector (13) holds and hence, completes
the proof of lemma. We proceed with our detailed proof below.

First, let us assume that (84) holds. We have

‖δ(k)‖ = ‖Qδ̃(k)‖ ≤ ‖Q‖2‖δ̃(k)‖

< ‖Q‖2 min
{c1(x∗)

‖Q‖2
,
c1(z∗η)

‖Q‖2uη
,

1− ρ(H)

q/‖Q−1‖2

}
≤ min

{
c1(x∗),

c1(z∗η)

uη

}
, (86)

Thus, by Lemma 2, we have δ(k+1) = Hδ(k) +q2(δ(k). Sub-
stituting H = QΛQ−1 and multiplying both sides with Q−1

yields Q−1δ(k+1) = ΛQ−1δ(k) + Q−1q2(δ(k)). Replacing
Q−1δ(k) by δ̃(k) and δ(k) by Qδ̃(k) in the last equation, we
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obtain (29), i.e., δ̃(k+1) = Λδ̃(k) +q3(δ̃(k)). Here, the second
term q3 can be bounded as follows

‖q3

(
δ̃(k)

)
‖ = ‖Q−1q2(Qδ̃(k))‖ ≤ ‖Q−1‖2‖q2(Qδ̃(k))‖

≤ ‖Q−1‖2
(
c2(x∗) + ‖∇PC(z∗η)‖2c2(z∗η)

)
‖Qδ̃(k)‖2

≤ ‖Q−1‖2
(
c2(x∗) + ‖∇PC(z∗η)‖2c2(z∗η)

)
‖Q‖22‖δ̃(k)‖2

=
q

‖Q−1‖2
‖δ̃(k)‖2. (87)

Now, taking the norms of both sides of (29) and applying the
triangle inequality yield

‖δ̃(k+1)‖ ≤ ‖Λδ̃(k)‖+ ‖q3

(
δ̃(k)

)
‖

≤ ρ(H)‖δ̃(k)‖+
q

‖Q−1‖2
‖δ̃(k)‖2

< ρ(H)‖δ̃(k)‖+
(
1− ρ(H)

)
‖δ̃(k)‖

= ‖δ̃(k)‖, (88)

where the second inequality stems from ‖δ̃(k)‖ < (1 −
ρ(H))/(q/‖Q−1‖2). From (84) and (88), we conclude that
(85) holds. By the principle of induction, we have (84) holds
for all k ∈ N provided that it holds at k = 0, i.e.,

‖δ̃(0)‖ < min
{c1(x∗)

‖Q‖2
,
c1(z∗η)

‖Q‖2uη
,

1− ρ(H)

q/‖Q−1‖2

}
. (89)

Second, we prove that (13) is sufficient for (89). Using the
definition δ̃(k) = Q−1δ(k), we have

‖δ̃(k)‖ = ‖Q−1δ(k)‖ ≤ ‖Q−1‖2‖δ(k)‖. (90)

Upper-bounding ‖δ(k)‖ by the LHS of (13) and substituting
back into (90) yield

‖δ̃(k)‖ < ‖Q−1‖2 min
{c1(x∗)

κ(Q)
,
c1(z∗η)

κ(Q)uη
,

1− ρ(H)

q

}
.

Finally, replacing κ(Q) by the product ‖Q‖2‖Q−1‖2 and
simplifying yield (89). This completes our proof of the lemma.

APPENDIX E
PROOF OF LEMMA 4

In this section, we show the convergence of {‖δ̃(k)‖}∞k=0

using Theorem 1 in [37]. Our idea is to consider a surrogate
sequence {ak}∞k=0 that upper-bounds {‖δ̃(k)‖}∞k=0:{

a0 = ‖δ̃(0)‖,
ak+1 = ρ(H)ak + q

‖Q−1‖2 a
2
k.

First, we prove by induction that

‖δ̃(k)‖ ≤ ak ∀k ∈ N. (91)

The base case when k = 0 holds trivially as a0 = ‖δ̃(0)‖. In
the induction step, given ‖δ̃(k)‖ ≤ ak for some integer k ≥ 0,
we have

‖δ̃(k+1)‖ ≤ ρ(H)‖δ̃(k)‖+
q

‖Q−1‖2
‖δ̃(k)‖2

≤ ρak +
q

‖Q−1‖2
a2
k

= ak+1.

By the principle of induction, (91) holds for all k ∈ N.
Next, applying Theorem 1 in [37], under the condition a0 =
‖δ̃(0)‖ < (1 − ρ(H))/(q/‖Q−1‖2), yields ak ≤ ε̃a0 for
any integer k satisfies (31). From (91), we further have
‖δ̃(k)‖ ≤ ak ≤ ε̃a0 = ε̃‖δ̃(0)‖. This completes our proof
of the lemma.
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