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I. RELATED WORKS

In this section, we review existing approaches to conver-
gence analysis of iterative first-order methods in optimization
including projected gradient descent. We present several as-
pects of convergence, namely, convergence to a global versus
a local optimum and speed of convergence. Finally, we clarify
our contribution in this work with regard to previous works in
the literature.

A. Convergence of Iterative First-Order Methods

Convergence properties of iterative algorithms such as PGD
often involve two key aspects: the quality of convergent points
and the speed of convergence. On the one hand, the quality
of convergent points provides useful insights into when the
algorithm converges, whether it converges to a stationary point
or a set of stationary points of the problem, and how big
is the gap between the objective function at the convergent
point and the optimal objective value. On the other hand, the
speed of convergence concerns the order of convergence, the
rate of convergence, and the number of iterations required
to obtain sufficiently small errors. Let {x(k)}∞k=0 be the
sequence of updates generated by a certain iterative first-order
method (e.g., PGD). In order to prove the convergence of the
algorithm, it is common [1]–[5] to consider the convergence
of the following quantities to 0 as k → ∞: (i) the norm
of the generalized gradient (∥ 1

η (x
(k+1) − x(k))∥), (ii) the

gap between current objective function and the optimal value
(|f(x(k)) − f∗|), and (iii) the distance to a convergent point
(∥x(k) − x∗∥). Here, we note that f∗ and x∗ are the limiting
points of the objective function f(x(k)) and the parameter x(k)

as the number of iterations k goes to infinity, respectively. In
(i), the convergence of the generalized gradient norm to 0
implies the stationarity condition of the constrained problem
is satisfied. It follows that the algorithm converges to a set
of stationary points of the problem. In (ii), the convergence
on the function side is often obtained via the monotonicity of
the objective-value sequence {f(x(k))}∞k=0 (e.g., decreasing
to a limiting value f∗). This in turn implies the sequence
{x(k)}∞k=0 converges to a set of local optima that yields the
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same objective function value f∗.1 In (iii), the convergence of
∥x(k)−x∗∥ implies convergence to a unique point that is often
an isolated local optimum point of the problem. Typically,
convergence on the domain side is used in linear convergence
proofs for strongly convex settings.

B. Convergence to a Global Optimum

In general, a stationary point can be a saddle point, a lo-
cal/global minimum, or local/global maximum of the problem.
When both the objective function and the constraint set are
convex, it is well-known that all stationary points are also
global optima of the problem. Convergence analysis of iter-
ative algorithm (e.g., PGD) in convex optimization therefore
focus on providing a universal upper bound on the distance
to the global solutions. Analysis on the domain side (iii) is
usually used in the presence of strong convexity that guarantees
the uniqueness of the global optimum [1]-Section 8.6. Without
the strong convexity, one may resort to analysis on the function
side (ii) in order to prove convergence to a set of global
optima [6]-Section 10.4.3. When convexity is not guaranteed,
due to a non-convex objective and/or a non-convex constraint
set, convergence analysis has recourse to a set of stationary
points by bounding the generalized gradient norm through
iterations (i) [3]-Section 2.3.2. Notwithstanding, recent ad-
vances in structured non-convex optimization have shed light
on convergence guarantees to global solutions of the problem.
By exploiting the special structure of some classes of non-
convex problems and using appropriate initialization, PGD can
be shown to converge to a unique global optimum despite the
non-convexity of these problems. Examples of such powerful
results include sparse recovery with restricted isometry prop-
erties [7], matrix completion with incoherence properties [8],
empirical risk minimization with restricted strong convexity
and smoothness properties [9], and spherically constrained
quadratic minimization with hidden convexity [10].

C. Convergence to a Local Optimum

In general non-convex settings, domain-side convergence
analysis is restricted to the local region around the con-
vergence point x∗. Such points can be a saddle point, a

1An example for such scenario is minimizing a convex but not strongly
convex function f(x) = ∥x∥1 subject to x ∈ Rn and ∥x∥22 = 1. The 2n
vectors {ei}ni=1 and {−ei}ni=1 are local minimizers that obtain the same
objective function value. It is worthwhile mentioning that they are also the
global solutions of the foregoing problem.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, JULY 2022 2

local minimum, or a local maximum of the problem. The
ROC associated with x∗ is the neighborhood in which the
algorithm (e.g., PGD) is guaranteed to converge to x∗ when
initialized inside this region. To a certain extent, the ROC in
the aforementioned global convergence analysis is the entire
feasible space. However, while global convergence analysis
does not require the initialization to be close to the global
solution, it often ignores the local structure near the solu-
tion needed for establishing sharp bounds on the speed of
convergence. In particular, bounding techniques employed in
global convergence analysis hold universally, including worst-
case scenarios. Thus, in many problem-specific settings where
the solution lies in a benign neighborhood, the global analysis
could lead to conservative convergence rate bounds. As an
illustration, in minimizing a smooth and strongly convex
function f , gradient descent with a fixed step size achieves
the rate of convergence at most (κ−1)/(κ+1) [11], where κ
is the (global) condition number of f . Recall that the condition
number of a differentiable convex function is the ratio of its
smoothness L to strong convexity µ [4]. For any quadratic
function, this global bound is also an exact and attainable
estimate thanks to the fact that the objective curvature is
unchanged everywhere. For non-quadratic objectives, on the
other hand, this global bound may be loose as κ takes into
account the worst-case scenario, in which the objective func-
tion is most ill-conditioned. The asymptotic behavior of gra-
dient descent near the solution indeed relies on the condition
number of the local Hessian κ(x∗) of the objective function,
defining as λmax(∇2f(x∗))/λmin(∇2f(x∗)). Generally, we
have µ ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x∗)) ≤ L, for any
x in the domain of f , which implies κ(x∗) ≤ κ. This local
condition number κ(x∗) can be significantly smaller than the
global condition number κ and hence, a local convergence
analysis can yield a tighter bound that reflects the actual
convergence speed of the algorithm near the solution. Similar
situation also occurs for constrained least squares in which
the Hessian restricted to the constrained set can depend on
the local structure of the set.

D. Speed of Convergence

To illustrate the concept of convergence speed, let us
consider the convergence on the domain side, i.e., the dis-
tance

∥∥x(k) − x∗
∥∥. Let µ be a number between 0 and 1.

The convergence of {x(k)}∞k=0 to x∗ is said to be at rate
µ ≜ µ({x(k)}∞k=0) if µ = inf{ϵk}∞

k=0
limk→∞ ϵk+1/ϵk, for

any monotonically decreasing sequence {ϵk}∞k=0 satisfying∥∥x(k) − x∗
∥∥ ≤ ϵk for all index k. The asymptotic rate of

convergence of gradient descent to x∗, denoted by ρ, is defined
by the worst-case rate of convergence among all possible
sequences {x(k)}∞k=0 that are generated by the algorithm and
converge to x∗, i.e., ρ = sup{x(k)}∞

k=0
µ({x(k)}∞k=0). Depend-

ing on the value of ρ in the interval [0, 1], the convergence is
said to be sublinear when ρ = 1, linear when 0 < ρ < 1,
or superlinear when ρ = 0. The lower the value of ρ is, the
faster the speed of convergence is and the fewer the number
of iterations needed is to obtain a close approximation of
the solution. Thus, analytical estimation of the convergence

rate plays a pivotal role in convergence analysis. We would
like to note two distinct methods for linear convergence
rate analysis dating back to the 1960s. The first approach
was proposed by Polyak [2], based on his earlier study into
nonlinear difference equations [12]. The author analyzed the
asymptotic convergence of gradient descent for minimizing
some objective function f . Assuming x∗ is a non-singular
local minimum of f , Polyak showed that for any δ > 0, there
exists ϵ > 0 such that if

∥∥x(0) − x∗
∥∥ < ϵ then the sequence

{x(k)}∞k=0 generated by gradient descent satisfies∥∥∥x(k) − x∗
∥∥∥ ≤

∥∥∥x(0) − x∗
∥∥∥ (ρ+ δ)k, (1)

where ρ = max{|1− ηλmax| , |1− ηλmin|} and λmax and
λmin are the largest and smallest eigenvalues of ∇2f(x∗),
respectively. Here we emphasize that f does not need to be
smooth and strongly convex everywhere but only so around
x∗. By setting ηopt = 2/(λmax + λmin), the optimal rate of
convergence is given by ρopt = (κ∗ − 1)/(κ∗ + 1), where
κ∗ = λmax/λmin is the condition number of the local Hessian
∇2f(x∗). When f is a strongly convex quadratic, the local
result coincides with the aforementioned global result in [11]
(κ∗ = κ). The expression of ρ in (1) is called the asymptotic
convergence rate of gradient descent with fixed step size
η.2 The second approach was developed by Daniel [13] in
1967, while studying gradient descent with exact line search,
i.e., choosing η that minimizes the objective at each iteration.
Utilizing the Kantorovich inequality [14], the author proved
that if x(0) is sufficiently close to x∗, there exist a constant ϵ
and a sequence {qk}∞k=0 such that∥∥∥x(k) − x∗

∥∥∥ ≤ ϵ

k∏
i=0

qi, lim
k→∞

qk = (κ∗ − 1)/(κ∗ + 1).

Note that here the characteristics of convergence are also
exploited through the Hessian ∇2f(x∗). This result was then
extended to study the asymptotic convergence of projected
gradient descent for constrained optimization [15]–[17].

II. PROOF OF EXAMPLE 1

Our goal in this proof is to establish the Lipschitz dif-
ferentiability of the projection operator onto the unit sphere
C = {x ∈ Rn | ∥x∥ = 1}. We start by establishing the
Lipschitz differentiability at a point on C and then extend it
to any nonzero point in Rn. For the Lipschitz differentiability
on C, we introduce the following lemma:

Lemma 1. For any x∗ ∈ C, we have

sup
y∈ΠC(x∗+δ)

∥y − x∗ −
(
I − x∗(x∗)⊤

)
δ∥ ≤ 2∥δ∥2. (2)

Proof. We consider two cases:
Case 1: If x∗+δ = 0, then ΠC(0) = C and ∥δ∥ = ∥x∗∥ = 1.
For any y ∈ C, substituting δ = −x∗ and then using the fact

2It is worthwhile to mention that using a similar technique, Nesterov [4]
proved that the asymptotic rate is at most ρ̂ = (κ∗ + 1)/(κ∗ + 3). While
this bound also exploits the local information of the optimization problem,
we note that it is not as tight as the bound in (1).
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that I − x∗(x∗)⊤ is the projection onto the null space of x∗,
we have

y − x∗ −
(
I − x∗(x∗)⊤

)
δ = y − x∗ +

(
I − x∗(x∗)⊤

)
x∗

= y − x∗.

Next, taking the norm and using the triangle inequality yield

∥y − x∗ −
(
I − x∗(x∗)⊤

)
δ∥ = ∥y − x∗∥

≤ ∥y∥+ ∥x∗∥ = 2∥δ∥2,

where the last step stems from ∥y∥ = ∥x∗∥ = ∥δ∥ = 1. Thus,
(2) holds in this case.
Case 2: If x∗+δ ̸= 0, then ΠC(x

∗+δ) is singleton containing
the unique projection

PC(x
∗ + δ) =

x∗ + δ

∥x∗ + δ∥
.

Hence, (2) is equivalent to∥∥∥∥ x∗ + δ

∥x∗ + δ∥
− x∗ −

(
I − x∗(x∗)⊤

)
δ

∥∥∥∥ ≤ 2∥δ∥2. (3)

We prove (3) by (i) showing that for any scalars u > 0 and
(1− u)2 ≤ v ≤ (1 + u)2:

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2) ≥ 0, (4)

and (ii) showing that (4) is equivalent to (3) with u = ∥x∗ +
δ∥ > 0 and v = ∥δ∥2 ≥ 0.
(i) To prove (4), let us consider the following cases:

1) If 0 < u ≤ 2/17, then for v ≤ (1 + u)2, we have

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2)

≥ (17u− 2)(1 + u)4 − 2u(1− u)2(1 + u)2

+ (1− u)4(u+ 2)

= 16u2(u+ 2)(u2 + 2u+ 2) ≥ 0.

2) If 2/17 < u ≤ 1/2, then for (1 − u)2 ≤ v ≤ (1 + u)2,
the following holds

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2)

≥ (17u− 2)(1− u)4 − 2u(1− u)2(1 + u)2

+ (1− u)4(u+ 2)

= 8u(1− u)2(2− u)(1− 2u) ≥ 0.

3) If u > 1/2, using the quadratic vertex at v = u(1 −
u)2/(17u− 2) as the minimum point, we obtain

(17u− 2)v2 − 2u(1− u)2v + (1− u)4(u+ 2)

≥ 4(1− u)4(4u2 + 8u− 1)

17u− 2
≥ 0.

(ii) Now for u = ∥x∗ + δ∥ > 0 and v = ∥δ∥2 ≥ 0, we have
(x∗)⊤δ = (u2 − v − 1)/2 and

(3) ⇔
∥∥∥∥ x∗ + δ

∥x∗ + δ∥
− x∗ −

(
I − x∗(x∗)⊤

)
δ

∥∥∥∥ ≤ 2∥δ∥2

⇔ ∥x∗ + δ − ∥x∗ + δ∥(x∗ + δ − x∗(x∗)⊤δ)∥2

≤ 4∥x∗ + δ∥2∥δ∥4

⇔ ∥(1− u)(x∗ + δ) + u((x∗)⊤δ)x∗∥22 ≤ 4u2v2

⇔ (1− u)2u2 + u2
(u2 − v − 1

2

)2

+ 2u(1− u)
u2 − v − 1

2

u2 − v + 1

2
≤ 4u2v2

⇔ (4).

Finally, by the triangle inequality, we have

|∥x∗ + δ∥ − ∥x∗∥| ≤ ∥δ∥ ≤ ∥−x∗∥+ ∥x∗ + δ∥,

which in turn verifies (1−u)2 ≤ v ≤ (1+u)2. This completes
our proof of the lemma.

Next, to extend the result in Lemma 1 to any x ∈ R \ {0},
we substitute x∗ = x/∥x∥ and δ = δ/∥x∥ into (2) and obtain

sup
y∈ΠC(

x
∥x∥+

δ
∥x∥ )

∥∥∥∥y − x

∥x∥
−

(
In − xx⊤

∥x∥2
) δ

∥x∥

∥∥∥∥ ≤ 2
∥δ∥2

∥x∥2
.

(5)

Since the projection onto the unit sphere is scale-invariant,

ΠC

( x

∥x∥
+

δ

∥x∥

)
= ΠC(x+ δ). (6)

Substituting (6) into (5) yields (6). Thus, by Definition 2, for
any x ̸= 0 we obtain

∇PC(x) =
1

∥x∥

(
In − xx⊤

∥x∥2
)
,

c1(x) = ∞, c2(x) =
2

∥x∥2
.

III. DETAILS OF APPLICATION B - ITERATIVE HARD
THRESHOLDING FOR SPARSE RECOVERY

A. Proof of (42)

In this subsection, we first show that any x∗ ∈ Φ=s and
x ∈ B(x∗, |x∗

[s]|/
√
2) share the same index set of s-largest

elements (in magnitude), i.e., Ωs(x
∗). Then, we construct a

counter-example to demonstrate that |x∗
[s]|/

√
2 is the largest

possible radius so that (42) holds.
First, we show that for any i ∈ Ωs(x

∗) and j ∈ {1, . . . , n}\
Ωs(x

∗), |xj | < |xi| as follows. In particular, we have

|xj − x∗
j |+ |xi − x∗

i | ≤
√
2((xj − x∗

[j])
2 + (xi − x∗

i )
2)

≤
√
2∥x− x∗∥2 < |x∗

[s]|,
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where the last inequality stems from the fact that ∥x−x∗∥ <
|x∗

[s]|/
√
2. Now, since x∗

j = 0 for all j ∈ {1, . . . , n}\Ωs(x
∗),

we have

|xj | = |xj − x∗
j |

< |x∗
[s]| − |xi − x∗

i |
≤ |x∗

i | − |xi − x∗
i |

≤ |x∗
i + (xi − x∗

i )| = |xi|, (7)

Therefore, every x ∈ B(x∗, |x∗
[s]|/

√
2) shares the same index

set of s-largest (in magnitude) elements with x∗, i.e., Ωs(x) =
Ωs(x

∗), which implies (42).
We now construct the counter-example as a point x such

that Ωs(x) ̸= Ωs(x
∗) and x is not in B(x∗, |x∗

[s]|/
√
2) but

arbitrarily close to its boundary. Without loss of generality,
assume that |x∗

1| ≥ . . . ≥ |x∗
s| > |x∗

s+1| = . . . = |x∗
n| = 0.

For arbitrarily small ϵ > 0, define x as

xi =


x∗
s/2 if i = s,

x∗
s/2 + ϵ if i = s+ 1,

xi otherwise.

Then, since xs+1 < xs, x does not shares the same index set
of s-largest (in magnitude) elements with x∗. On the other
hand, as ϵ → 0, we have

∥x− x∗∥ =

√√√√ n∑
i=1

(xi − x∗
i )

2

=

√(
−x∗

s

2

)2

+
(x∗

s

2
+ ϵ

)2

→ 1√
2
|x∗

[s]|.

This means x ̸∈ B(x∗, |x∗
[s]|/

√
2) but it can approach the

boundary of the ball as ϵ decreases to 0.

B. Proof of Remark 6

In the following, we show any stationary point x∗ of (40)
is also a local minimum by proving that the objective function
does not decrease if we add any perturbation to x∗ on C. Let
us consider any perturbation δ such that δ ∈ B(0, c1(x∗))
and x = x∗ + δ ∈ C. Since x ∈ B(x∗, c1(x

∗)), using (7), we
have |x[1]| ≥ . . . |x[s]| > 0. On the other hand, since x has
no more than s non-zero entries, it must hold that |x[s+1]| =
. . . = |x[n]| = 0. Therefore, x = Sx∗S⊤

x∗x, which implies
δ = Sx∗S⊤

x∗δ. Now we represent the change in the objective
function as

1

2
∥A(x∗ + δ)− b∥2 − 1

2
∥Ax∗ − b∥2

=
1

2
δ⊤A⊤Aδ + δ⊤A⊤(Ax∗ − b)

=
1

2
δ⊤Sx∗S⊤

x∗A⊤ASx∗S⊤
x∗δ + δ⊤Sx∗S⊤

x∗A⊤(Ax∗ − b)

=
1

2
δ⊤Sx∗(S⊤

x∗A⊤ASx∗)S⊤
x∗δ ≥ 0, (8)

where the last equality uses the stationarity condition in (43).
From (8), we conclude x∗ is a local minimum of (40).
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