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SECTION A
PROOF OF LEMMA 2

Since the constraint gradients are of the form {ei ⊗
Si(x

∗)}Ni=1, the tangent space to C at x∗ is given by

Tx∗C =
{
y ∈ R2N |

( N∑
i=1

eie
⊤
i ⊗ Si(x

∗)
)⊤
y = 0N

}
.

Denote vi = [−x∗
2i, x

∗
2i−1]

⊤ for i = 1, . . . , N . A basis of Tx∗C
is given by {ei⊗vi}Ni=1, i.e., the columns of Z. Alternatively,
Tx∗C can be represented as

Tx∗C =
{
Zu | u ∈ RN

}
. (50)

(⇒) From Chapter 11.5 in [18], the second-order necessary
condition for a stationary point x∗ to be a local minimum of
(10) is y⊤∇2

xL(x
∗,γ)y ≥ 0 for all y ∈ Tx∗C. In other words,

for any u ∈ RN , we have

0 ≤ (Zu)⊤
(
A⊤A− diag(γ)⊗ I2

)
(Zu)

= u⊤(Z⊤A⊤AZ −Z⊤(diag(γ)⊗ I2)Z
)
u

= u⊤(Z⊤A⊤AZ −Z⊤Z diag(γ)
)
u

= u⊤(Z⊤A⊤AZ − diag(γ)
)
u,

where the second equality stems from Lemma 11 and the third
equality uses the semi-orthogonality of Z. Thus, we conclude
that H ⪰ 0N .
(⇐) From Chapter 11.5 in [18], the second-order sufficient
condition for a stationary point x∗ to be a local minimum of
(10) is y⊤∇2

xL(x
∗,γ)y > 0 for all y ∈ Tx∗C. By the same

argument, this is equivalent to H ≻ 0N .

SECTION B
PROOF OF REMARK 1

Recall that the objective function is given by f = ∥Ax −
b∥2/2. By definition of the Riemannian Hessian [23], for any
vector fields U, V : C → TC on C, we have

Hessf(U, V ) = ⟨∇Ugradf, V ⟩, (51)

where gradf : C → TC is the Riemannian gradient given by

gradf(x) = ZZ⊤∇f(x) = ZZ⊤A⊤(Ax− b), (52)

for x ∈ C and Z is the corresponding basis matrix of the
tangent space to C at x (see Lemma 2). In addition, ∇Ugradf
is the covariant derivative of the vector field gradf in the
direction of the vector field U . The covariant derivative is
the orthogonal projection of the directional derivative onto the
tangent space to the manifold at x, i.e.,

∇Ugradf(x) = ZZ⊤DUgradf(x)

= ZZ⊤ lim
t→0

gradf(x+ tu)− gradf(x)
t

, (53)

where u = U(x). Substituting (52) into the numerator on the
RHS of (53) and simplifying the expression, we obtain

∇Ugradf(x) = ZZ⊤(A⊤Au−BA⊤(Ax− b)
)
,

where

B =

N∑
i=1

eie
⊤
i ⊗

(
Si(u)

(
Si(x)

)⊤
+ Si(x)

(
Si(u)

)⊤)
.

Now, denoting v = V (x) and evaluating (51) at x yields

Hessfx(u,v) = v⊤ZZ⊤(A⊤Au−BA⊤(Ax− b)
)

= v⊤(A⊤Au−BA⊤(Ax− b)
)
, (54)

where the last equality stems from v ∈ TxC and hence, v =
ZZ⊤v. In the case x = x∗ is a stationary point of (10) with
the Lagrange multiplier γ, one can substituting (18) into (54)
to obtain

Hessfx(u,v) = v⊤(A⊤Au−B(diag(γ)⊗ I2)x
)
. (55)

Notice that x =
∑N

i=1 ei ⊗ Si(x) and
(
Si(u)

)⊤
Si(x) = 0

for all i = 1, . . . , N . Therefore, the second term on the RHS
of (55) can be simplified as

B(diag(γ)⊗ I2)x =

N∑
i=1

γiei ⊗ Si(u) = (diag(γ)⊗ I2)u.

Substituting back into (55) and reorganizing terms, we obtain
the Riemannian Hessian as

Hessfx(u,v) = u⊤(A⊤A− (diag(γ)⊗ I2)
)
v. (56)

Finally, it follows from (50) that there is a one-to-one cor-
respondence between the tangent space TxC and RN , i.e.,
u = Zũ and v = Zṽ for ũ, ṽ ∈ RN . Hence, we can define
a bilinear function H : RN × RN → R:

H(ũ, ṽ) ≜ Hessfx(u,v)

= (Zũ)⊤
(
A⊤A− (diag(γ)⊗ I2)

)
(Zṽ)

= ũ⊤(Z⊤A⊤AZ − diag(γ))ṽ,

where the last equality stems from Z⊤Z = IN . In other
words, Hessfx admits a compact matrix representation H =
Z⊤A⊤AZ − diag(γ).

SECTION C
PROOF OF LEMMA 3

(⇒) Assume x∗ is a fixed point of Algorithm 1 with step
size η > 0, i.e.,

x∗ = PC(x
∗ − ηr), (57)

where r = A⊤(Ax∗ − b). We will show there exists γ ∈ RN

such that for all i = 1, . . . , N ,

Si(r) = γiSi(x
∗) (58)

and {
γi < 1/η if Si(x

∗) ̸= s,

γi ≤ 1/η if Si(x
∗) = s,

(59)

where we recall that s = [1, 0]⊤.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023 2

For i = 1, . . . , N , applying the 2-selection operator Si(·)
to both side of (57) and substituting the RHS by the definition
of PC in (13) yield

Si(x
∗) =

{
Si(x

∗−ηr)
∥Si(x∗−ηr)∥ if Si(x

∗ − ηr) ̸= 02,

s if Si(x
∗ − ηr) = 02.

(60)

We split (60) into two cases based on the value of Si(x
∗). If

Si(x
∗) ̸= s, then (60) implies

Si(x
∗) =

Si(x
∗ − ηr)

∥Si(x∗ − ηr)∥
=

Si(x
∗)− ηSi(r)

∥Si(x∗ − ηr)∥
,

which in turns can be reorganized as Si(r) = γiSi(x
∗) for

γi ≜
1− ∥Si(x

∗)− ηSi(r)∥
η

<
1

η
. (61)

If Si(x
∗) = s, we consider two sub-cases:

1) If Si(x
∗ − ηr) ̸= 02, then by the same argument as the

previous case, we obtain (61).
2) If Si(x

∗ − ηr) = 02, then using the linearity of Si, we
have Si(r) = γiSi(x

∗) where γi = 1/η.
In all cases, we have (58) and (59) hold. Finally, we note
that the stationarity condition (18) is equivalent to Si(r) =
γiSi(x

∗) for all i = 1, . . . , N .
(⇐) Assume x∗ is a stationary point of (10) (i.e., (58

holds for all i = 1, . . . , N ) with the corresponding Lagrange
multiplier γ satisfying (59) for all i = 1, . . . , N . We will prove
(57) by showing that

Si

(
PC(x

∗ − ηr)
)
= Si(x

∗), (62)

for any i = 1, . . . , N .
By the definition of PC in (13), we have

Si

(
PC(x

∗ − ηr)
)
=

{
Si(x

∗−ηr)
∥Si(x∗−ηr)∥ if Si(x

∗ − ηr) ̸= 02,

s if Si(x
∗ − ηr) = 02.

(63)

Using the linearity of Si(·) and then the stationarity condition
in (58) yield

Si(x
∗ − ηr) = Si(x

∗)− ηSi(r)

= Si(x
∗)− ηγiSi(x

∗) = (1− ηγi)Si(x
∗).
(64)

Since x ∈ C, ∥Si(x
∗)∥ = 1. Taking the norm of both sides in

(64) and using (59) to remove the absolute value, we obtain

∥Si(x
∗ − ηr)∥ = ∥(1− ηγi)Si(x

∗)∥
= |1− ηγ|∥Si(x

∗)∥ = 1− ηγ.

Therefore, (63) is equivalent to

Si

(
PC(x

∗ − ηr)
)
=

{
Si(x

∗) if 1− ηγi ̸= 0,

s if 1− ηγi = 0.
(65)

If 1 − ηγi ̸= 0, then (62) holds trivially. If 1 − ηγi = 0,
then Si(PC(x

∗ − ηr)) = s and γi = 1/η. From (59), the
latter only holds if Si(x

∗) = s. Thus, we obtain Si(PC(x
∗ −

ηr)) = Si(x
∗) = s. In both case, we have (62) holds for all

i = 1, . . . , N . This completes our proof of the lemma.

SECTION D
PROOF OF LEMMA 4

In this section, we show that when Conditions (C1) and
(C2) in Theorem 1 hold, Condition (C3’), i.e.,

η(λ1(H) + 2γi) < 2, (66)

for all i = 1, . . . , N , is sufficient for Condition (C3). First,
we prove that Dη = (IN − η diag(γ))−1 is PSD. Second, we
show that all the eigenvalues of DηH lie between 0 and (1−
ηγi)

−1λ1(H) (exclusively). Third, we prove that the spectral
radius of Mη = IN − ηDηH is strictly less than 1.

In the first step, rearranging (66), we obtain ηλ1(H)/2 <
1−ηγi. By Condition (C1), we have λ1(H) > 0. Since η > 0,
it follows that 0 < ηλ1(H)/2 < 1 − ηγi. Thus, the diagonal
matrix Dη has all positive entries and hence, is a PSD matrix.
In the second step, we use the inequalities for the eigenvalues
of the product of two PSD matrices in [34] to obtain

λi(Dη)λN (H) ≤ λi(DηH) ≤ λi(Dη)λ1(H), (67)

for all i = 1, . . . , N . Since both Dη and H are PSD, we
can lower bound the eigenvalues of DηH by λi(DηH) ≥
λi(Dη)λN (H) > 0. On the other hand, substituting
λi(Dη) = (1 − ηγi)

−1 into the upper bound in (67) yields
λi(DηH) ≤ (1 − ηγi)

−1λ1(H). Finally, using the fact
that λi(Mη) = 1 − ηλi(DηH) and 0 < λi(DηH) ≤
(1− ηγi)

−1λ1(H), for all i = 1, . . . , N , we obtain

1− η

1− ηγi
λ1(H) ≤ λi(Mη) < 1.

Now, rearranging (66) to obtain 1 − η
1−ηγi

λ1(H) > −1,
we have all the eigenvalues of Mη lie between −1 and 1
(exclusively). Since the spectral radius is the maximum of
the absolute values of these eigenvalues, we conclude that
ρ(Mη) < 1. This completes our proof in this section.

SECTION E
PROOF OF LEMMA 5

In the first part of this proof, we show that γi < 1/η for all
i = 1, . . . , N . From Condition (C2), we have Dη = (IN −
η diag(γ))−1 is invertible and hence, the expression of Mη

in (24) is well-defined. In addition, from Condition (C1), H
has a unique PD square root H1/2, with the inverse H−1/2.
Thus, we have

H1/2MηH
−1/2

= H1/2

(
IN − η

(
IN − η diag(γ)

)−1

H

)
H−1/2

= IN − ηH1/2DηH
1/2 ≜ M̃η.

This shows that Mη and M̃η are similar matrices with the
same set of eigenvalues. Combining this with Condition (C3),
we obtain ρ(Mη) = ρ(M̃η) < 1. Since M̃η is symmetric, it
then holds that

M̃η = IN − ηH1/2DηH
1/2 ≺ IN ,

which in turn yields H1/2DηH
1/2 ≻ 0N . By the defi-

nition of PD matrices, for any vector u ∈ RN , it holds
that u⊤H1/2DηH

1/2u > 0. Alternatively, we can write
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v⊤Dηv > 0, where v = H1/2u. Notice that the mapping
between u and v is bijective, which means v⊤Dηv > 0
also holds for any v ∈ RN . Consequently, Dη = diag([(1 −
ηγ1)

−1, . . . , (1−ηγN )−1]) must be a PD matrix. Equivalently,
we have γi < 1/η for all i = 1, . . . , N .

For the second part of the proof, we note that γi < 1/η, for
all i = 1, . . . , N , are sufficient conditions for the Lagrange
multiplier condition (22) in Lemma 3. Since a strict local
minimum is also a stationary point of (10), x∗ must be a
fixed point of Algorithm 1 with the given step size η. This
completes our proof of the lemma.

SECTION F
PROOF OF LEMMA 6

Using the PGD update in (14) and rewriting x(k) = x∗ +
δ(k), we derive a recursion on the error vector as follows

δ(k+1) = x(k+1) − x∗ = PC

(
x(k) − ηA⊤(Ax(k) − b

))
− x∗

= PC

(
(x∗ + δ(k))− ηA⊤(A(x∗ + δ(k))− b

))
− x∗

= PC

((
x∗ − ηA⊤(Ax∗ − b)

)
+ (I2N − ηA⊤A)δ(k)

)
− x∗.

(68)

Since x∗ is a stationary point of (10), we have A⊤(Ax∗−b) =
(diag(γ) ⊗ I2)x

∗. Then, the first term inside the projection
PC on the RHS of (68) can be represented as

x∗ − ηA⊤(Ax∗ − b) =
(
I2N − η diag(γ)⊗ I2

)
x∗

=
((

IN − η diag(γ)
)
⊗ I2

)
x∗

= (D−1
η ⊗ I2)x

∗ = (Dη ⊗ I2)
−1x∗,

where we recall that Dη = (IN − η diag(γ))−1 ≻ 0N by
Lemma 5. Thus, we rewrite (68) as δ(k+1) = PC

(
(Dη ⊗

I2)
−1x∗+(I2N−ηA⊤A)δ(k)

)
−x∗. Now let y = x∗+(Dη⊗

I2)(I2N−ηA⊤A)δ(k) and using the modulus scale-invariance
property of the projection PC((Dη ⊗ I2)

−1y) = PC(y), for
Dη ≻ 0N , we further obtain

δ(k+1) = PC

(
x∗ + (Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
− x∗.

(69)

Finally, applying Proposition 1 with the perturbation δ =
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k) at x = x∗ ∈ C, we have

PC

(
x∗+(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
= x∗ +ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

+ q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
.

Substituting this back into (69) yields (27). This completes the
proof of the lemma.

Remark 2. The modulus scale-invariance property of the pro-
jection leads to a more elegant analysis of asymptotic conver-
gence rate that avoids the need of characterizing the projection
at a point outside the manifold z∗

η = x∗ − ηA⊤(Ax∗ − b).
This technique can also be applied to other cases, for instance,
the projection onto the n-dimensional unit-sphere [11] or the
Steifel manifold S = {A ∈ Rn×r | A⊤A = Ir}.

SECTION G
PROOF OF LEMMA 7

Since x(k) lies in C, we can represent the error vector as

δ(k) = x(k) − x∗ = PC(x
(k))− x∗

= PC(x
∗ + δ(k))− x∗. (70)

Using Proposition 1, substituting PC(x
∗ + δ(k)) = x∗ +

ZZ⊤δ(k) + q(δ(k)) into the RHS of (70), we obtain δ(k) =
ZZ⊤δ(k) + q(δ(k)). This completes our proof of the lemma.

SECTION H
AUXILIARY LEMMAS

Lemma 11. Given a matrix Z ∈ R2N×N as in (19). Then for
any diagonal matrix D ∈ RN×N , we have (D⊗I2)Z = ZD.

Proof. Recall from (39) that Z =
∑N

i=1 eie
⊤
i ⊗ vi, where

vi = [−x2i, x2i−1]
⊤. By representing D =

∑N
i=1 Diieie

⊤
i ,

we have

(D ⊗ I2)Z =
(( N∑

i=1

Diieie
⊤
i

)
⊗ I2

)
·
( N∑
j=1

eje
⊤
j ⊗ vj

)
=

N∑
i=1

N∑
j=1

Dii

(
(e⊤i ej) · eie⊤j

)
⊗ vj

=

N∑
i=1

N∑
j=1

((
eie

⊤
i

)
·
(
Djjeje

⊤
j

))
⊗ (vi · 1)

=
( N∑
i=1

eie
⊤
i ⊗ vi

)
·
(( N∑

i=1

Djjeje
⊤
j

)
⊗ 1

)
=

( N∑
i=1

eie
⊤
i ⊗ vi

)
·
( N∑
i=1

Djjeje
⊤
j

)
= ZD,

where e⊤i ej = 1 if i = j and e⊤i ej = 0 if i ̸= j.

Lemma 12. For any eigenvalue λ of ZMηZ
⊤, either λ = 0

or λ is an eigenvalue of Mη . Consequently, we have

ρ(ZMηZ
⊤) = ρ(Mη).

Proof. Let (λ,u) be a pair of eigenvalue and eigenvector of
ZMηZ

⊤. Then, we have

ZMηZ
⊤u = λu. (71)

Left-multiplying both sides of (71) by Z⊤ and using the semi-
orthogonality of Z, we obtain Mη(Z

⊤u) = λ(Z⊤u). This
means either Z⊤u = 0N or Z⊤u is an eigenvector of Mη .
In the former case, we have λ = 0. In the latter case, we have
λ is an eigenvalue of Mη . Finally, since the spectral radius
is the maximum absolute value of all eigenvalues, it is trivial
that ρ(ZMηZ

⊤) = ρ(Mη).

Lemma 13. (Rephrased from the supplemental material of
[35]) Let {ak}∞k=0 ⊂ R+ be the sequence defined by

ak+1 = ρak + qa2k for k = 0, 1, . . . , (72)
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where 0 < ρ < 1 and q ≥ 0. Then {ak}∞k=0 converges
monotonically to 0 if and only if a0 < 1−ρ

q . A simple linear
convergence bound in the case a0 < ρ 1−ρ

q can be derived as

ak ≤
(
1− a0q

ρ(1− ρ)

)−1

a0ρ
k. (73)

Proof. For each k ∈ N, let us define dk = ak/(a0ρ
k). Substi-

tuting ak = a0dkρ
k into (72) and defining τ = a0q/(1 − ρ),

we obtain d0 = 1 and

dk+1 = dk + τ(1− ρ)ρk−1d2k for k = 0, 1, . . . .

Since τ(1 − ρ)ρk−1d2k > 0, the sequence {dk}∞k=0 is strictly
increasing and positive. Thus, using di+1 > di > 0, for any
i = 0, 1, . . . , k − 1, we have

1

di
− 1

di+1
=

di+1 − di
di+1di

<
di+1 − di

d2i
= τ(1− ρ)ρi−1.

Summing over i = 0, 1, . . . , k − 1, we obtain

1− 1

dk
<

k−1∑
i=0

τ(1− ρ)ρi−1 =
τ

ρ
(1− ρk) <

τ

ρ
. (74)

Substituting dk = ak/(a0ρ
k) and τ = a0q/(1 − ρ) into (74)

and rearranging terms yield the bound on ak in (73).

Lemma 14. Let {bk}∞k=0 ⊂ R+ be the sequence defined by

bk+1 ≤ ρbk + qb2k for k = 0, 1, . . . , (75)

where 0 < ρ < 1 and q ≥ 0. If b0 < 1−ρ
q , then {bk}∞k=0

converges to 0. If b0 < c ≜ ρ 1−ρ
q , then for any integer k ≥ 0,

we have

bk ≤
(
1− b0

c

)−1

b0ρ
k.

Proof. Let us define a surrogate sequence {ak}∞k=0 that upper-
bounds {bk}∞k=0 as: a0 = b0 and ak+1 = ρak+qa2k. First, we
prove by induction that

bk ≤ ak, ∀k ∈ N. (76)

The base case when k = 0 holds trivially as b0 = a0. In the
induction step, given bk ≤ ak for an integer k ≥ 0, we have

bk+1 ≤ ρbk + qb2k ≤ ρak + a2k = ak+1.

By the principle of induction, (76) holds for all k ∈ N. Now,
by Lemma 13, we have bk ≤ ak ≤

(
1− a0q

ρ(1−ρ)

)−1
a0ρ

k =
(
1−

b0q
ρ(1−ρ)

)−1
b0ρ

k. This completes our proof of the lemma.

SECTION I
REGION OF CONVERGENCE

This subsection demonstrates the region of local conver-
gence for PGD in a 2-D setting. Since N = 1 in this case,
the constraint set C is indeed a 2-D circle. As can be seen
from Fig. 7, the least squares objective has an unconstrained
global minimum at x∗

unc = [0.7, 0.2]⊤, with A = diag([5, 1])
and b = [3.5, 0.2]⊤. Using Lemma 1, we can find the four

Fig. 7: A 2-D illustration of the region of convergence given
by the constant c0(x∗, η) in (30). On the circle, the two purple
hexagrams denote the local maxima, while the green asterisk
and the red diamond denote the local minima of the problem.
The red star located inside the circle is the solution to the
unconstrained least squares. For a given fixed step size η,
each local minimum is associated with (i) an estimated region
of convergence (dashed circle) given by c0(x

∗, η) and (ii) an
empirical region of convergence (circular arc with matching
color) given by running PGD with the fixed step size η and
initialization at a given point on the circle to verify which
local minimum it converges to.

stationary points of the 2-D UMLS problem by solving the
following system of non-linear equations

x2
1 + x2

2 = 1,

25x1 − 17.5 = γx1,

x2 − 0.2 = γx2.

Moreover, based on the positivity of the reduced Riemannian
Hessian h = 25x2

2 + x2
1 − γ (which is a scalar in the 2-

D setting), one can apply Lemma 2 to determine the two
local maxima (purple hexagrams) and two local minima (green
asterisk and red diamond). Additionally, for each local minima,
the rate of convergence is given by ρη = 1 − ηh/(1 − ηγ),
with the maximum possible step size ηmax = 2/(h + 2γ).
In Fig. 7, we pick η = 0.0755 and compute the theoretical
region of convergence for each local minima using (30). On
the other hand, the empirical region of convergence is obtained
follows. First, we run PGD with η = 0.0755 and 1000 different
initialization uniformly distributed on the unit circle. Next,
we check whether the algorithm stops inside the theoretical
region of convergence after 1000 iterations to determine if
it converges to the corresponding local minimum. Finally, we
color the initialization points by the color of the corresponding
local minimum PGD converges to (either green or red). While
Fig. 7 verifies that our theoretical region of convergence falls
inside the empirical region of convergence, it also reveals that
our bound is conservative in this example.


